Math, asked by Anonymous, 1 day ago

{\displaystyle \sf \bold \red{\int^{2}_{ - 2} \bigg( {x}^{3}  \cos \frac{x}{2}  +  \frac{1}{2}  \bigg) \sqrt{4 -  {x}^{2} }  \: dx}}

Answers

Answered by sajan6491
15

\displaystyle \sf \red{\int^{2}_{ - 2} \bigg( {x}^{3} \cos \frac{x}{2} + \frac{1}{2} \bigg) \sqrt{4 - {x}^{2} } \: dx}

\displaystyle \sf \red{ = \int^{2}_{ - 2} \bigg( {x}^{3} \cos \frac{x}{2} \frac{}{} \bigg) \sqrt{4 - {x}^{2} } \: dx + \int^{2}_{ - 2} \bigg( \frac{1}{2} \bigg) \sqrt{4 - {x}^{2} } \: dx}

\sf \red{ \bigg({ {x}^{3} }^{} cos \frac{x}{2} \bigg) \sqrt{4 - {x}^{2} } \: is \: an \: odd \: function}

Recall the integral of an odd function over a symmetric intevral [-a, a] is zero.

\displaystyle\sf \red{\implies \int^{2}_{ - 2} \bigg( {x}^{3} cos \frac{x}{2} \bigg ) \sqrt{4 - {x}^{2} }\: dx = 0}

\displaystyle\sf \red{ = \int^{2}_{ - 2} \bigg( {}^{} \frac{1}{2} \bigg) \sqrt{4 - {x}^{2} } \: dx }

x²+y²=4 is a circle centered at (0,0) with a radius of 2.

\displaystyle \sf \red{ \implies \int^{2}_{ - 2} \bigg( \frac{1}{2} \bigg) \sqrt{4 - {x}^{2} } \: dx = half \: the \: area \: of \: (semi \: circle , \: radius \: 2)}

\sf \red{ = \bigg( \frac{1}{2} \bigg ) \bigg( \frac{1}{2} \bigg) \pi(2) {}^{2} = \pi}

Similar questions