Math, asked by saichavan, 4 days ago


  \displaystyle \: \sf( \cosec x -  \sin \: x)( \sec x -  \cos x) =  \frac{1}{ \tan \: x +  \cot x}
 \sf \: No \: Spam

Answers

Answered by Anonymous
11

“Refer the attachment”

Hope it is helpful to you ♥️♥️

Attachments:
Answered by MaddCarl
5

 \boxed{  \boxed{\begin{array}{cc}  \rightarrow\sf Given \\   \hookrightarrow\rm( \cosec x - \sin \: x)( \sec x - \cos x) = \dfrac{1}{ \tan \: x + \cot x} \end{array}}}

 \boxed{  \boxed{\begin{array}{cc}  \rightarrow\sf To  \: Prove\\   \hookrightarrow\rm( \cosec x - \sin \: x)( \sec x - \cos x) = \dfrac{1}{ \tan \: x + \cot x} = 1 \end{array}}}

 \boxed{  \boxed{\begin{array}{ll}   \hookrightarrow\rm( \cosec x - \sin \: x)( \sec x - \cos x) = \dfrac{1}{ \tan \: x + \cot x}  \\  \\  \\    \hookrightarrow \bigg\lbrack \rm \dfrac{1}{ \sin x}  -  \sin x \bigg \rbrack \bigg \lbrack \dfrac{1}{ \cos x} -  \cos x \bigg \rbrack \left\lbrack \dfrac{1}{ \dfrac{ \sin x}{ \cos x} +  \dfrac{ \cos x}{ \sin x}  }\right \rbrack  \\  \\  \\ \hookrightarrow \bigg\lbrack \rm \dfrac{1-  \sin^{2}  x}{ \sin x}   \bigg \rbrack \bigg \lbrack \dfrac{1-  \cos^{2}  x}{ \cos x}  \bigg \rbrack \left\lbrack {   \dfrac{ \cos x}{ \sin x}  + \dfrac{ \sin x}{ \cos x}  }\right \rbrack   \\  \\  \\   \hookrightarrow  \bigg\lbrack \rm \dfrac{\cos^{2}  x}{ \sin x}   \bigg \rbrack \bigg \lbrack \dfrac{ \sin^{2}  x}{ \cos x}  \bigg \rbrack \left\lbrack {   \dfrac{ \cos ^{2}  x +  \sin^{2}x }{ \sin x . \cos x}    }\right \rbrack   \\  \\  \\   \hookrightarrow \rm\dfrac{   \cancel{\cos ^{2} x}}{  \cancel{\sin x}} \times  \dfrac{ \cancel{ \sin ^{2} x}}{  \cancel{\cos x}}  \times  \dfrac{ 1}{ \cos x. \sin x} \\  \\  \\  \hookrightarrow \rm \dfrac{ \cos x. \sin x}{1}   \times  \dfrac{1}{ \cos x. \sin x}   \\  \\  \\    \hookrightarrow \rm\cancel\dfrac{\cos x. \sin x}{\cos x. \sin x}  \\  \\  \\  \hookrightarrow 1\end{array}}}

Similar questions