Math, asked by sajan6491, 5 hours ago

 \displaystyle \sf \frac{1}{1 +  log_{a}bc}  +  \frac{1}{ 1 +  \log_{b}ac}  +  \frac{1}{1 +  log_{c}ab}

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle \sf \frac{1}{1 + log_{a}bc} + \frac{1}{ 1 + \log_{b}ac} + \frac{1}{1 + log_{c}ab}

We know,

\rm :\longmapsto\:\boxed{\tt{  log_{a}(b) =  \frac{logb}{loga}}}

So, using this identity, we get

\rm \:  =  \: \displaystyle \sf \frac{1}{1 + \dfrac{logbc}{loga}} + \frac{1}{ 1 +  \dfrac{logac}{logb} } + \frac{1}{1 + \dfrac{logab}{logc} }

\rm \:  =  \: \displaystyle \sf \frac{1}{ \dfrac{loga + logbc}{loga}} + \frac{1}{\dfrac{logb + logac}{logb} } + \frac{1}{\dfrac{logc + logab}{logc} }

We know,

\rm :\longmapsto\:\boxed{\tt{ \:  \:  logx + logy = logxy \:  \: }}

So, using this identity, we get

\rm \:  =  \: \displaystyle \sf \frac{1}{ \dfrac{logabc}{loga}} + \frac{1}{\dfrac{logabc}{logb} } + \frac{1}{\dfrac{logabc}{logc} }

\rm \:  =  \: \dfrac{loga}{logabc}  + \dfrac{logb}{logabc}  + \dfrac{logc}{logabc}

\rm \:  =  \: \dfrac{loga + logb + logc}{logabc}

\rm \:  =  \: \dfrac{logabc}{logabc}

\rm \:  =  \: 1

Hence,

\boxed{\tt{ \displaystyle \sf \frac{1}{1 + log_{a}bc} + \frac{1}{ 1 + \log_{b}ac} + \frac{1}{1 + log_{c}ab} = 1}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{ log \frac{a}{b} = loga - logb}}

\boxed{\tt{ log {a}^{b} = bloga \: }}

\boxed{\tt{  log_{a}(a) = 1 \: }}

\boxed{\tt{  log_{a}( {a}^{x} ) = x \: }}

\boxed{\tt{  log_{ {a}^{y} }( {a}^{x} ) =  \frac{x}{y}  \: }}

\boxed{\tt{  log_{ {a}^{y} }( {b}^{x} ) =  \frac{x}{y}  log_{a}(b)  \: }}

\boxed{\tt{  {a}^{ log_{a}(x) }  = x}}

\boxed{\tt{  y{a}^{ log_{a}(x) }  =  {x}^{y} }}

Answered by Teluguwala
6

To Find :

The value of expression

 \displaystyle \sf \frac{1}{1 +  \log_{a}bc} + \frac{1}{ 1 + \log_{b}ac} + \frac{1}{1 + \log_{c}ab} = \: ?

 \:

Solution :

We use the following result,

\displaystyle  \sf \log_{c} x \:  =  \:  \frac{   \log_{} \: x }{  \log_ \: c}  \: and \log \: xy \:  =  \log x +  \log y

 \:

Consider,

\displaystyle \sf \frac{1}{1 + log_{a}bc} + \frac{1}{ 1 + \log_{b}ac} + \frac{1}{1 + log_{c}ab}

 \displaystyle \sf  \: : ⟹  \:  \frac{1} { 1 +  \frac{ \log \: bc}{a} }   + \frac{1}{ 1 +  \frac{ \log \: ca}{b} }  + \frac{1}{ 1 +  \frac{ \log \: ab}{c} }

  \displaystyle \sf\: : ⟹ \:  \frac{  \log \: a}{ \log \: a \:  +  \log \: bc}  + \frac{  \log \: b}{ \log \: b\:  +  \log \: ca}  \:  + \frac{  \log \: c}{ \log \: c\:  +  \log \: ab}

 \displaystyle \sf\: : ⟹ \:  \frac{  \log \: a}{ \log \: a \:  +  \log \: b  +  \log \: c}  + \frac{  \log \: b}{ \log \: b\:  +  \log \: c +  \log \: a}  \:  + \frac{  \log \: c}{ \log \: c\:  +  \log \: b +  \log \: a}

 \displaystyle \sf\: : ⟹ \:  \frac{ \log \: a \:  +  \log \: b  +  \log \: c}{ \log \: b \:  +  \log \: c \:  +  \log \: a}

 \displaystyle \sf\: : ⟹ \:  1

 \:

Hence,

  \boxed{\displaystyle \sf \frac{1}{1 + log_{a}bc} + \frac{1}{ 1 + \log_{b}ac} + \frac{1}{1 + log_{c}ab} = 1 }

Similar questions