Math, asked by sajan6491, 21 days ago


 \displaystyle   \sf\frac{ \sum \limits _{r = 0}^{n} ( - 1) {}^{r}  . {}^{n}  C_r \bigg( \frac{1}{r + p + 1 } \bigg) }{\sum \limits _{r = 0}^{p} ( - 1) {}^{r}  . {}^{p}  C_r \bigg( \frac{1}{r + n + 1 } \bigg)}  =  \frac{1}{k}

Find the value of k​

Answers

Answered by IamIronMan0
59

Answer:

1

Step-by-step explanation:

(1  -  x) {}^{n}  = { \sum \limits _{r = 0}^{n} ( - 1) {}^{r} . {}^{n} C_r \:    {x}^{r} } \\  \\ multiply \: both \: sides \: by \:  {x}^{p}  \\  \\  {x}^{p} (1  -  x) {}^{n}  = { \sum \limits _{r = 0}^{n} ( - 1) {}^{r} . {}^{n} C_r \:    {x}^{r + p} }  \\  \\ integrate \: both \: sides  \:  \: limit \: 0 \: to \: 1\\  \\  \int _{0} ^{1} {x}^{p} (1  -  x) {}^{n} \: dx  = { \sum \limits _{r = 0}^{n} ( - 1) {}^{r} . {}^{n} C_r    \int_{0} ^{1} \: {x}^{r + p} }   \: dx \\  \\ \int _{0} ^{1} {x}^{p} (1  -  x) {}^{n} \: dx  = { \sum \limits _{r = 0}^{n} ( - 1) {}^{r} . {}^{n} C_r     \ \frac{1}{r + p + 1} } \\  \\ \implies \sum \limits _{r = 0}^{n}  \frac{( - 1) {}^{r}}{n + p+ 1} . {}^{n} C_r     =  \beta(n,p) \\  \\ simillarly \\  \\ \sum \limits _{r = 0}^{p}  \frac{( - 1) {}^{r}}{r + n+ 1} . {}^{p} C_r     =  \beta(p,n)

So required value

 \displaystyle \sf\frac{ \sum \limits _{r = 0}^{n} ( - 1) {}^{r} . {}^{n} C_r \bigg( \frac{1}{r + p + 1 } \bigg) }{\sum \limits _{r = 0}^{p} ( - 1) {}^{r} . {}^{p} C_r \bigg( \frac{1}{r + n + 1 } \bigg)}  =  \frac{\beta(p,n)}{\beta(n,p)}   \\  \\ since \: \beta(n,p) = \beta(p,n) \\  \\  \implies \frac{1}{k}  = 1 \implies \: k = 1

Similar questions