Math, asked by Anonymous, 9 days ago

 \ \displaystyle \sf\frac{ \sum \limits _{r = 0}^{n} ( - 1) {}^{r} . {}^{n} C_r \bigg( \frac{1}{r + p + 1 } \bigg) }{\sum \limits _{r = 0}^{p} ( - 1) {}^{r} . {}^{p} C_r \bigg( \frac{1}{r + n + 1 } \bigg)} = \frac{1}{k}r=0∑p​(−1)r.pCr​(r+n+11​)\ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \
Find The Value Of 'k'

Don't Dare To Spam:))​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Before we start the solution, Let's recall the propertie of Beta function to be used.

\boxed{\tt{ B(m,n) = \displaystyle\int_{0}^{1}\rm  {x}^{m} {(1 - x)}^{n} \: dx \:  = B(n,m)}}

Now,

We know, From Binomial Theorem, we have

\rm :\longmapsto\: {(1 - x)}^{n} = \displaystyle\sum_{r = 0}^{n}\rm  {( - 1)}^{r}  \: ^nC_r \:  {x}^{r}

can be further rewritten as

\rm :\longmapsto\:  {x}^{p} {(1 - x)}^{n} =  {x}^{p} \displaystyle\sum_{r = 0}^{n}\rm  {( - 1)}^{r}  \: ^nC_r \:  {x}^{r}

\rm :\longmapsto\:  {x}^{p} {(1 - x)}^{n} = \displaystyle\sum_{r = 0}^{n}\rm  {( - 1)}^{r}  \: ^nC_r \:  {x}^{r}  \times {x}^{p}

\rm :\longmapsto\:  {x}^{p} {(1 - x)}^{n} = \displaystyle\sum_{r = 0}^{n}\rm  {( - 1)}^{r}  \: ^nC_r \:  {x}^{r + p}

On integrating both sides w. r. t. x, between x = 0 and x = 1, we get

\rm :\longmapsto\:\displaystyle\int_{0}^{1}\rm   {x}^{p} {(1 - x)}^{n}dx =\displaystyle\int_{0}^{1}\rm   \displaystyle\sum_{r = 0}^{n}\rm  {( - 1)}^{r}  \: ^nC_r \:  {x}^{r + p}dx

\rm :\longmapsto\: B(p,n) = \displaystyle\sum_{r = 0}^{n}\rm  {( - 1)}^{r}  \: ^nC_r \:  \displaystyle\int_{0}^{1}\rm  {x}^{r + p}dx

\rm :\longmapsto\: B(p,n) = \displaystyle\sum_{r = 0}^{n}\rm  {( - 1)}^{r}  \: ^nC_r \:   \bigg[\frac{ {x}^{r + p + 1} }{r + p + 1}\bigg]_{0}^{1}

\rm :\longmapsto\: B(p,n) = \displaystyle\sum_{r = 0}^{n}\rm  {( - 1)}^{r}  \: ^nC_r \:   \bigg[\frac{1}{r + p + 1} - 0\bigg]

\rm :\longmapsto\: B(p,n) = \displaystyle\sum_{r = 0}^{n}\rm  {( - 1)}^{r}  \: ^nC_r \:   \bigg[\frac{1}{r + p + 1} \bigg] -  -  (1)

Similarly,

\rm :\longmapsto\: B(n,p) = \displaystyle\sum_{r = 0}^{p}\rm  {( - 1)}^{r}  \: ^pC_r \:   \bigg[\frac{1}{r + p + 1} \bigg] -  -  (2)

Now, Consider

\rm :\longmapsto\: \displaystyle \sf\frac{ \sum \limits _{r = 0}^{n} ( - 1) {}^{r} . {}^{n} C_r \bigg( \dfrac{1}{r + p + 1 } \bigg) }{\sum \limits _{r = 0}^{p} ( - 1) {}^{r} . {}^{p} C_r \bigg( \dfrac{1}{r + n + 1 } \bigg)} = \frac{1}{k}

\rm :\longmapsto\:\dfrac{B(n,p)}{B(p,n)}  = \dfrac{1}{k}

\rm :\longmapsto\:\dfrac{1}{k}  = 1

\bf\implies \:k \:  =  \: 1

Answered by EmperorSoul
15

\large\underline{\sf{Solution-}}

Before we start the solution, Let's recall the propertie of Beta function to be used.

\boxed{\tt{ B(m,n) = \displaystyle\int_{0}^{1}\rm  {x}^{m} {(1 - x)}^{n} \: dx \:  = B(n,m)}}

Now,

We know, From Binomial Theorem, we have

\rm :\longmapsto\: {(1 - x)}^{n} = \displaystyle\sum_{r = 0}^{n}\rm  {( - 1)}^{r}  \: ^nC_r \:  {x}^{r}

can be further rewritten as

\rm :\longmapsto\:  {x}^{p} {(1 - x)}^{n} =  {x}^{p} \displaystyle\sum_{r = 0}^{n}\rm  {( - 1)}^{r}  \: ^nC_r \:  {x}^{r}

\rm :\longmapsto\:  {x}^{p} {(1 - x)}^{n} = \displaystyle\sum_{r = 0}^{n}\rm  {( - 1)}^{r}  \: ^nC_r \:  {x}^{r}  \times {x}^{p}

\rm :\longmapsto\:  {x}^{p} {(1 - x)}^{n} = \displaystyle\sum_{r = 0}^{n}\rm  {( - 1)}^{r}  \: ^nC_r \:  {x}^{r + p}

On integrating both sides w. r. t. x, between x = 0 and x = 1, we get

\rm :\longmapsto\:\displaystyle\int_{0}^{1}\rm   {x}^{p} {(1 - x)}^{n}dx =\displaystyle\int_{0}^{1}\rm   \displaystyle\sum_{r = 0}^{n}\rm  {( - 1)}^{r}  \: ^nC_r \:  {x}^{r + p}dx

\rm :\longmapsto\: B(p,n) = \displaystyle\sum_{r = 0}^{n}\rm  {( - 1)}^{r}  \: ^nC_r \:  \displaystyle\int_{0}^{1}\rm  {x}^{r + p}dx

\rm :\longmapsto\: B(p,n) = \displaystyle\sum_{r = 0}^{n}\rm  {( - 1)}^{r}  \: ^nC_r \:   \bigg[\frac{ {x}^{r + p + 1} }{r + p + 1}\bigg]_{0}^{1}

\rm :\longmapsto\: B(p,n) = \displaystyle\sum_{r = 0}^{n}\rm  {( - 1)}^{r}  \: ^nC_r \:   \bigg[\frac{1}{r + p + 1} - 0\bigg]

\rm :\longmapsto\: B(p,n) = \displaystyle\sum_{r = 0}^{n}\rm  {( - 1)}^{r}  \: ^nC_r \:   \bigg[\frac{1}{r + p + 1} \bigg] -  -  (1)

Similarly,

\rm :\longmapsto\: B(n,p) = \displaystyle\sum_{r = 0}^{p}\rm  {( - 1)}^{r}  \: ^pC_r \:   \bigg[\frac{1}{r + p + 1} \bigg] -  -  (2)

Now, Consider

\rm :\longmapsto\: \displaystyle \sf\frac{ \sum \limits _{r = 0}^{n} ( - 1) {}^{r} . {}^{n} C_r \bigg( \dfrac{1}{r + p + 1 } \bigg) }{\sum \limits _{r = 0}^{p} ( - 1) {}^{r} . {}^{p} C_r \bigg( \dfrac{1}{r + n + 1 } \bigg)} = \frac{1}{k}

\rm :\longmapsto\:\dfrac{B(n,p)}{B(p,n)}  = \dfrac{1}{k}

\rm :\longmapsto\:\dfrac{1}{k}  = 1

\bf\implies \:k \:  =  \: 1

Similar questions