Math, asked by Anonymous, 6 hours ago

 \displaystyle  \sf\int_{0}^{2}  \int_{x }^{ {x}^{2} } x \cdot {y}^{2}  - xdydx

Answers

Answered by BARATHSHIVAM
1

Step-by-step explanation:

= 2⁸/24 - 2⁴/4 - 2⁶/18 + 2³/3

= 2³ ( 2⁵/24- 2/4 - 2³/18 + 1/3]

= 8 ( 32(3) - 2(18) -8(4) + 1(24))/72

= ( 96-36-32+24) /9

= 42/9 = 14/3+C

Attachments:
Answered by Anonymous
42

  \:  \:  \:  \:  \:  \:  \: \bf\red{Answer:-}

\longmapsto\rm\displaystyle \sf\int_{0}^{2}( \frac{x}{3} ( {y}^{3} )^{ {x}^{3}   } _{x} - x(y) ^{ {x}^{2} } _{n})dydn

\rm \longmapsto \displaystyle{ \rm\int\limits_{0}^{2}( \frac{x}{3} ( {x}^{6}  -  {x}^{3}) - x( {x}^{2}   - x))dydn}

\longmapsto\rm \displaystyle \int\limits_{0}^{2} \frac{1}{3} (  \rm{x}^{7}  -  {x}^{4} ) -  {x}^{3}  +  {x}^{2} )dydn

\rm \longmapsto \displaystyle\cancel{\int\limits}_{ \cancel{0}}^{ \cancel{2}} \frac{1}{3} ( \rm \: x \frac{8}{8}  -    \dfrac{ {x}^{5} }{5} ) ^{2}  -  \frac{1}{4} ( {x}^{4} ) ^{2}   _{0}  +  \frac{1}{3} ( {x}^{3} )^{2}   _{0}

 \longmapsto \rm \frac{1}{3} (32 -  \frac{32}{5} ) -  \frac{1}{ \cancel4} ( \cancel{ - 16} \frac{4}{}\: ) +  \frac{8}{3}

 \longmapsto \rm \frac{1}{3} ( \frac{128}{5} ) =  \frac{128}{15} +  \frac{8}{3}   -  \frac{4}{1}

 \longmapsto \rm \frac{128 + 40 - 60}{15}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \rm \fbox{[460 - 160 = 300]}

 \longmapsto \rm \frac{300}{15}

 \longmapsto \rm20 \times 2

 \longmapsto \rm \fbox \red{200}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

@Shivam

#Bebrainly

Similar questions