Math, asked by Anonymous, 6 hours ago


\displaystyle \sf \int_{0}^{ \frac{\pi}{2} } \frac{ tanx}{4 ln {}^{2} (tanx) + {\pi}^{2} } \: dx∫02π
Dont Dare to Spam​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle \sf \int_{0}^{ \frac{\pi}{2} } \frac{ tanx}{4 ln {}^{2} (tanx) + {\pi}^{2} } \: dx

Let assume that

\rm :\longmapsto\:I = \displaystyle \sf \int_{0}^{ \frac{\pi}{2} } \frac{ tanx}{4 ln {}^{2} (tanx) + {\pi}^{2} } \: dx -  -  - (1)

To evaluate this integral, we use method of Substitution.

So, Substitute

\rm :\longmapsto\:ln(tanx) = y

\rm :\longmapsto\:tanx =  {e}^{y}

\rm :\longmapsto\: {sec}^{2} xdx =  {e}^{y} dy

\rm :\longmapsto\:dx = \dfrac{{e}^{y}}{ {sec}^{2} x} dy

\rm :\longmapsto\:dx = \dfrac{{e}^{y}}{1 +  {tan}^{2} x} dy

\rm :\longmapsto\:dx = \dfrac{{e}^{y}}{1 + {e}^{2y}} dy

We know, in definite integrals, when we substitute, we have to change the limits too.

So,

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf  -  \infty  \\ \\ \sf  \dfrac{\pi}{2}  & \sf  \infty  \end{array}} \\ \end{gathered}

So, given integral can be rewritten as

\rm :\longmapsto\:I = \displaystyle \sf \int_{ -  \infty }^{ \infty  } \frac{{e}^{y}}{4  {y}^{2}  + {\pi}^{2} } \:  \times \dfrac{{e}^{y}}{{e}^{2y} + 1} \: dy

\rm :\longmapsto\:I = \displaystyle \sf \int_{ -  \infty }^{ \infty  } \frac{{e}^{2y}}{(4  {y}^{2}  + {\pi}^{2} )({e}^{2y} + 1)} \: dy -  -  - (2)

Now, above integral can be also be rewritten as on replacing y by - y as

\rm :\longmapsto\:I = \displaystyle \sf \int_{ -  \infty }^{ \infty  } \frac{{e}^{ - 2y}}{(4  {y}^{2}  + {\pi}^{2} )({e}^{ - 2y} + 1)} \: dy

\rm :\longmapsto\:I = \displaystyle \sf \int_{ -  \infty }^{ \infty  } \frac{1}{(4  {y}^{2}  + {\pi}^{2} )({e}^{2y} + 1)} \: dy -  -  - (3)

On adding equation (2) and (3), we get

\rm :\longmapsto\:2I = \displaystyle \sf \int_{ -  \infty }^{ \infty  } \frac{1 + {e}^{2y}}{(4  {y}^{2}  + {\pi}^{2} )({e}^{2y} + 1)} \: dy

\rm :\longmapsto\:2I = \displaystyle \sf \int_{ -  \infty }^{ \infty  } \frac{1}{4{y}^{2}  + {\pi}^{2}} \: dy

\rm :\longmapsto\:2I = \dfrac{1}{4}  \displaystyle \sf \int_{ -  \infty }^{ \infty  } \frac{1}{{y}^{2}  +  \dfrac{ {\pi}^{2} }{4} } \: dy

\rm :\longmapsto\:I = \dfrac{1}{8} \times \dfrac{2}{\pi} {tan}^{ - 1}\bigg[\dfrac{2y}{\pi} \bigg]_{ -  \infty }^{ \infty  }

\rm :\longmapsto\:I = \dfrac{1}{8} \times \dfrac{2}{\pi} [{tan}^{ - 1}( \infty ) -  {tan}^{ - 1}( -  \infty )]

\rm :\longmapsto\:I = \dfrac{1}{8} \times \dfrac{2}{\pi} [{tan}^{ - 1}( \infty )  + {tan}^{ - 1}(\infty )]

\rm :\longmapsto\:I = \dfrac{1}{8} \times \dfrac{2}{\pi} [2{tan}^{ - 1}( \infty )]

\rm :\longmapsto\:I = \dfrac{1}{8} \times \dfrac{2}{\pi} \times 2 \times \dfrac{\pi}{2}

\bf\implies \:I = \dfrac{1}{4}

Similar questions