Math, asked by Anonymous, 19 days ago

 \displaystyle  \sf\int_{0}^{ \infty }  \frac{ {e}^{ - 2x}  \: tanh(x)}{x}  \: dx

Answers

Answered by IMMANUEL1122
0

Step-by-step explanation:

HOPE THIS ANSWER HELPS YOU DEAR

MARK ME AS BRAINALIST

Stay Home Stay Safe

Download PhotoMath app for your maths doubt

Thank You Dear

Attachments:
Answered by sajan6491
11

\displaystyle \tt \red{\int_{0}^{ \infty } \frac{ {e}^{ - 2x} \: tanh(x)}{x} \: dx}

\displaystyle \tt \red{\int_{0}^{ \infty } {e}^{ - 2x}\frac{  \: 2 \sinh^{2} (x)}{2 \sinh(x)  \cosh(x) } \:  \frac{dx}{x}}

\displaystyle \tt \red{\int_{0}^{ \infty } {e}^{ - 2x}\frac{  \:  \cosh^{} (2x) - 1}{\sinh(2x)  } \:  \frac{dx}{x}}

\displaystyle \tt \red{\int_{0}^{ \infty } {e}^{ - 2x}\frac{  \:  e^{2x}   +  {e}^{ - 2x}  - 2}{e^{2x}   -  {e}^{ - 2x} } \:  \frac{dx}{x}}

\displaystyle \tt \red{\int_{0}^{ \infty } \frac{  \:  e^{ - 2x}   +  {e}^{ - 6x}  - 2 {e}^{ - 4x} }{^{}    {1 - e}^{  - 4x} } \:  \frac{dx}{x}}

\displaystyle \tt \red{\int_{1}^{ 0 } \frac{ {x}^{ -  \frac{1}{2}  }  +  {x}^{ \frac{1}{2} }  - 2}{1 - x } \:  \frac{1}{  \ln(x)  } \: dx}

\displaystyle \tt \red{\int_{0}^{ \infty } \int_{0}^{ 1} \frac{ {x}^{t -  \frac{1}{2}  }  +  {x}^{ t + \frac{1}{2 {}^{} } }  - 2 {x}^{t} }{1 - x } \: dxdt}

 \displaystyle \tt \red  {\int_{0}^{ \infty }\left ( - \int_{0}^{ 1 } \frac{1 -  {x}^{t -  \frac{1}{2} } }{1 - x}  \: dx - \int_{0}^{ 1 } \frac{1 -  {x}^{t +  \frac{1}{2} } }{1 - x} \: dx + 2 \int_{0}^{ 1 } \frac{1 -  {x}^{t} }{1 - x}dx \right)dt}

 \displaystyle \bf \red{\int_{0}^{ \infty }  \bigg[  - \Psi \bigg( t -  \frac{1}{2}  \bigg)- \Psi \bigg( t +  \frac{3}{2} \bigg) +2 \Psi(t + 1) \bigg] \: dt }

\tt \red{  \ln \bigg( \dfrac{ \Gamma^{2}(t + 1) }{ \Gamma(t +  \frac{1}{2} ) \Gamma(t +  \frac{3}{2} )} \bigg) \bigg|_{t = 0}^{t \to \infty}  }

\tt \red{  \ln(1) -   \ln \bigg( \dfrac{ \Gamma^{2}( 1) }{ \Gamma(\frac{1}{2} ) \Gamma( \frac{3}{2} )} \bigg)  }

\tt \red{  \ln\bigg(  \dfrac{1}{2}  {\Gamma}^{2} \bigg(  \dfrac{1}{2} \bigg)  \bigg)  }

  \red { \ln( \frac{\pi}{2} ) }

Similar questions