Math, asked by sajan6491, 7 hours ago

 \displaystyle \sf\int_{0}^{ \infty } \frac{x^{2020} }{1 + x + {x}^{2} + \cdot\cdot\cdot \cdot\cdot\cdot + {x}^{2020} } \: dx​​

Answers

Answered by IamIronMan0
53

Answer:

Integral doesn't converge

Step-by-step explanation:

\displaystyle \sf\lim_{x \to \infty } \frac{ {x}^{2020} }{1 + x +  {x}^{2}. \: . + {x}^{2020} }  \\  \\  = \displaystyle \sf\lim_{x \to \infty }  \frac{1}{ \frac{1}{ {x}^{2020}  +  }{\frac{1}{x {}^{2019} } }  \:  \: . \: . \: . \:  .\:  \: 1}  \\  \\  = 1 \neq \: 0

Answered by Anonymous
43

\small\bold\red{Integral  \:  does \:  not \:  converge}

  • Please see attached file.

\small\green{Thank \:  You}

Attachments:
Similar questions