Math, asked by Anonymous, 5 hours ago

 \displaystyle \sf \int_{1}^{ \infty}  \frac{1}{ {x}^{p} }  \: dx

Answers

Answered by senboni123456
5

Step-by-step explanation:

We have,

 \displaystyle \tt \int^{ \infty }_{1} \frac{1}{ {x}^{p} }  \: dx

 \displaystyle =  \tt \int^{ \infty }_{1}  {x}^{ - p}   \: dx

 \displaystyle =  \tt \   \left[ \dfrac{ {x}^{ - p + 1}}{ - p + 1}  \right]^{ \infty }_{1}

 \displaystyle =  \tt \   \left[ \dfrac{ 1}{ (1- p)  \cdot \:  {x}^{1 - p} }  \right]^{ \infty }_{1}

 \displaystyle =  \tt \   \dfrac{ 1}{ (1- p)  \cdot \:   \infty  }  -  \dfrac{1}{1 - p}

 \displaystyle =  \tt \dfrac{1}{p - 1 }

Answered by OoAryanKingoO78
2

Answer:

We have,

 \red \displaystyle \tt \int^{ \infty }_{1} \frac{1}{ {x}^{p} }  \: dx

 \blue \displaystyle =  \tt \int^{ \infty }_{1}  {x}^{ - p}   \: dx

 \green \displaystyle =  \tt \   \left[ \dfrac{ {x}^{ - p + 1}}{ - p + 1}  \right]^{ \infty }_{1}

 \displaystyle =  \tt \   \left[ \dfrac{ 1}{ (1- p)  \cdot \:  {x}^{1 - p} }  \right]^{ \infty }_{1}

 \displaystyle =  \tt \   \dfrac{ 1}{ (1- p)  \cdot \:   \infty  }  -  \dfrac{1}{1 - p}

 \displaystyle =  \tt \dfrac{1}{p - 1 }

___________________

Similar questions