Math, asked by saichavan, 16 days ago


\displaystyle \sf \: \int \:  \frac{ \sec(x)  {}^{2}  - 1}{ \cot(x) }
No spam!
Only moderators!​

Answers

Answered by mathdude500
26

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle\int\rm \dfrac{ {sec}^{2}x - 1 }{cotx} \: dx \\

can be rewritten as

\rm \:  =  \: \displaystyle\int\rm  \frac{ {tan}^{2}x }{cotx} \: dx \\

\rm \:  =  \: \displaystyle\int\rm  {tan}^{3}x \: dx \\

\rm \:  =  \: \displaystyle\int\rm tanx \times  {tan}^{2}x \: dx \\

\rm \:  =  \: \displaystyle\int\rm tanx \times ( {sec}^{2}x - 1) \: dx \\

\rm \:  =  \: \displaystyle\int\rm tanx \:  {sec}^{2}x \: dx \:  -  \: \displaystyle\int\rm tanx \: dx \\

In the first integral, we use method of Substitution.

So, Substitute

\rm \: tanx = y \\

\rm \:  {sec}^{2} x  \: dx=d y \\

\rm \:  =  \: \displaystyle\int\rm y \: dy \:  -  \: log |secx|  + c \\

\rm \:  =  \:  \frac{ {y}^{2} }{2}  \:  -  \: log |secx|  + c \\

\rm \:  =  \:  \frac{ {tan}^{2} x}{2}  \:  -  \: log |secx|  + c \\

Hence,

\boxed{ \rm{ \:\rm \:\displaystyle\int\rm  \frac{ {sec}^{2}x - 1 }{cotx}dx =  \:  \frac{ {tan}^{2} x}{2}  \:  -  \: log |secx|  + c \:  \: }} \\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \: {sec}^{2}x -  {tan}^{2}x = 1 \: }} \\

\boxed{ \rm{ \:\displaystyle\int\rm tanx \: dx \:  =  \: log |secx|  + c \:  \: }} \\

\boxed{ \rm{ \:\displaystyle\int\rm  {x}^{n}  \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1}  + c \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by maheshtalpada412
24

Answer:

\displaystyle \sf \: \int \: \frac{ \sec(x) {}^{2} - 1}{ \cot(x) } dx

 \large\mathbb\red{ \tiny A \scriptsize \: N \small \:S \large \: W \Large \:E \huge \: R}

Take the integral:

 \\  \rm\[ \int \tan (x)\left(\sec ^{2}(x)-1\right) d x \]

Expanding the integrand \rm \tan (x)\left(\sec ^{2}(x)-1\right) gives \rm\tan (x) \sec ^{2}(x)-\tan (x) :

 \\ \rm\[ =\int\left(\tan (x) \sec ^{2}(x)-\tan (x)\right) d x \]

Integrate the sum term by term and factor out constants:

 \\ \rm\[ =\int \tan (x) \sec ^{2}(x) d x-\int \tan (x) d x \]

For the integrand \rm \tan (x) \sec ^{2}(x), \operatorname{substitute} u=\tan (x) and \rm d u=\sec ^{2}(x) d x :

 \\ \rm =\int u  \: d u-\int \tan (x) d x

 \\  \rm\[ =\frac{u^{2}}{2}-\int \tan (x) d x \]

 \text{Rewrite \(  \rm\tan (x) \) as \( \rm \dfrac{\sin (x)}{\cos (x)} \)}

 \\  \rm \[ =\frac{u^{2}}{2}-\int \frac{\sin (x)}{\cos (x)} d x \]

 \text{For the integrand \(  \rm\dfrac{\sin (x)}{\cos (x)} \), substitute \( \rm s=\cos (x) \) and \( \rm d s=-\sin (x) d x: \)}

 \\  \rm \[ =\frac{u^{2}}{2}-\int-\frac{1}{s} d s \]

Factor out constants:

 \\  \rm\[ =\frac{u^{2}}{2}+\int \frac{1}{s} d s \]

 \text{The integral of \(  \rm\dfrac{1}{s} \) is \( \rm \log (s): \)}

 \\  \rm\[ =\log (s)+\frac{u^{2}}{2}+\text { c } \]

 \text{Substitute back for \( \rm s=\cos (x): \)}

 \\  \rm =\frac{u^{2}}{2}+\log (\cos (x))+  c

 \text{Substitute back for \( \rm u=\tan (x) \) :}

 \\  \rm \[ =\frac{\tan ^{2}(x)}{2}+\log (\cos (x))+\text { c } \]

Which is equivalent for restricted x values to:

Answer:  \color{purple} \boxed{ \displaystyle\rm\[ \frac{\sec ^{2}(x)}{2}+\log (\cos (x))+\text { c } \]}

Similar questions