Math, asked by xoz, 4 months ago

\displaystyle\sf\lim\limits_{x\to\infty}\sqrt[x]{\dfrac{x!}{x^{x}}}Or\displaystyle\sf\lim\limits_{x\to\infty}\left(\dfrac{x!}{x}\right)^{\left(\dfrac{1}{x}\right)}

Answers

Answered by PD626471
16

Topic :-

Limits

To Solve :-

\sf {\displaystyle \lim_{x\to\infty}\left ( \dfrac{x!}{x} \right )^{\dfrac{1}{x}}}

Solution :-

\sf {Assume\:\:\displaystyle \lim_{x\to\infty}\left ( \dfrac{x!}{x} \right )^{\dfrac{1}{x}} = L}

Take log both sides,

\sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( \dfrac{x!}{x} \right )}

x! = x( x - 1 )( x - 2 ). . . . . . . 3 × 2 × 1

x! = x( x - 1 )!

Put value of x!,

\sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( \dfrac{x(x-1)!}{x} \right )}</p><p>\sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( (x-1)! \right )}

\sf {ln(L)=\displaystyle \lim_{x\to\infty} \dfrac{ln \left ( (x-1)! \right )}{x}}ln(L)= </p><p>x→∞</p><p>lim

Multiplying with ( x - 1 ) in numerator and denominator,

\sf {ln(L)=\displaystyle \lim_{x\to\infty} (x-1)\dfrac{ln \left ( (x-1)! \right )}{x(x-1)}}

We know that,

\sf {\displaystyle \lim_{x\to\infty} \dfrac{ln \left ( x! \right )}{x}=\infty}

\sf {ln(L)=(\infty) \displaystyle \lim_{x\to\infty} \dfrac{x-1}{x}}

\sf {ln(L)=(\infty) \displaystyle \lim_{x\to\infty} \left(1-\dfrac{1}{x}\right)}

Put value of limits,

\sf {ln(L)=(\infty) \left(1-\dfrac{1}{\infty}\right)}

\sf {ln(L)=(\infty) \left(1-0\right)}

\sf {ln(L)=\infty}

\sf{L=e^{\infty}}

\sf{L=\infty}

Answer :-

So, value of the limit 'L' is

\bold {\infty}

Answered by llMissSwagll
10

 \huge \sf \underline \red{answer}

To Solve :-

\sf {\displaystyle \lim_{x\to\infty}\left ( \dfrac{x!}{x} \right )^{\dfrac{1}{x}}}x→∞lim(xx!)x1

Solution :-

\sf {Assume\:\:\displaystyle \lim_{x\to\infty}\left ( \dfrac{x!}{x} \right )^{\dfrac{1}{x}} = L}Assumex→∞lim(xx!)x1=L

Take log both sides,

\sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( \dfrac{x!}{x} \right )}ln(L)=x→∞lim(x1)ln(xx!)</p><p>x! = x( x - 1 )( x - 2 ). . . . . . . 3 × 2 × 1</p><p>x! = x( x - 1 )!

Put value of x!,

</p><p>\sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( \dfrac{x(x-1)!}{x} \right )} &lt; /p &gt; &lt; p &gt; \sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( (x-1)! \right )}ln(L)=x→∞lim(x1)ln(xx(x−1)!)&lt;/p&gt;&lt;p&gt;ln(L)=x→∞lim(x1)ln((x−1)!)

\sf {ln(L)=\displaystyle \lim_{x\to\infty} \dfrac{ln \left ( (x-1)! \right )}{x}}ln(L)= &lt; /p &gt; &lt; p &gt; x→∞ &lt; /p &gt; &lt; p &gt; limln(L)=x→∞limxln((x−1)!)ln(L)=&lt;/p&gt;&lt;p&gt;x→∞&lt;/p&gt;&lt;p&gt;lim

Multiplying  \: with ( x - 1 ) in \:  numerator \:  and \:  denominator,</p><p>\sf {ln(L)=\displaystyle \lim_{x\to\infty} (x-1)\dfrac{ln \left ( (x-1)! \right )}{x(x-1)}}ln(L)=x→∞lim(x−1)x(x−1)ln((x−1)!)

We know that,

\sf {\displaystyle \lim_{x\to\infty} \dfrac{ln \left ( x! \right )}{x}=\infty}x→∞limxln(x!)=∞

\sf {ln(L)=(\infty) \displaystyle \lim_{x\to\infty} \dfrac{x-1}{x}}ln(L)=(∞)x→∞limxx−1

\sf {ln(L)=(\infty) \displaystyle \lim_{x\to\infty} \left(1-\dfrac{1}{x}\right)}ln(L)=(∞)x→∞lim(1−x1)

Put value of limits,

\sf {ln(L)=(\infty) \left(1-\dfrac{1}{\infty}\right)}ln(L)=(∞)(1−∞1)</p><p>\sf {ln(L)=(\infty) \left(1-0\right)}ln(L)=(∞)(1−0)

\sf {ln(L)=\infty}ln(L)=∞</p><p>\sf{L=e^{\infty}}L=e∞</p><p>\sf{L=\infty}L=∞

Answer :-

So,  \: value \:  of \:  the \:  limit  \: 'L' is \: </p><p>\bold {\infty}∞

Similar questions