Math, asked by Anonymous, 5 hours ago

 \displaystyle \sf \red{ \int_{0}^{3}  \int^{ \sqrt{9 -  {x}^{2}}}_{ -  \sqrt{9 -  {x}^{2} } }( {x}^{3}  + x {y}^{2} ) \: dydx}

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given double integral is

\rm :\longmapsto\:\displaystyle \sf { \int_{0}^{3} \int^{ \sqrt{9 - {x}^{2}}}_{ - \sqrt{9 - {x}^{2} } }( {x}^{3} + x {y}^{2} ) \: dydx}

can be rewritten as

\rm :\longmapsto\:\displaystyle \sf { \int_{0}^{3}\bigg[ \int^{ \sqrt{9 - {x}^{2}}}_{ - \sqrt{9 - {x}^{2} } }( {x}^{3} + x {y}^{2} ) \: dy\bigg]dx}

Now, we have to first integrate with respect to y treating x as constant.

So,

\red{\rm :\longmapsto\:f(y) =  {x}^{3} +  {xy}^{2}}

So,

\red{\rm :\longmapsto\:f( - y) =  {x}^{3} +  {x( - y)}^{2}=  {x}^{3} +  {xy}^{2}  = f(y)}

 \red{\rm \implies\:f(y) \: is \: even \: function}

So, above integral can be rewritten as

\rm \:  =  \: 2\displaystyle \sf { \int_{0}^{3} \bigg[\int^{ \sqrt{9 - {x}^{2}}}_{ 0}}( {x}^{3} +  {xy}^{2})dy \: \bigg] \: dx

\rm \:  =  \: 2\displaystyle \sf { \int_{0}^{3} }\bigg[ {x}^{3}y +  \dfrac{ {xy}^{3} }{3} \bigg] ^{ \sqrt{9 - {x}^{2}}}_{ 0}\: dx

\rm \:  =  \: 2\displaystyle\int_0^{3}\bigg( {x}^{3} \sqrt{9 -  {x}^{2} } + \dfrac{x {( \sqrt{9 -  {x}^{2} } )}^{3} }{3}   \bigg) dx

can be rewritten as

\rm \:  =  \: \dfrac{2}{3} \displaystyle\int_0^{3}\bigg( 3x.{x}^{2} \sqrt{9 -  {x}^{2} } + x {( \sqrt{9 -  {x}^{2} } )}^{3}\bigg) dx

\rm \:  =  \: \dfrac{2}{3} \displaystyle\int_0^{3}\bigg( 3{x}^{2} + 9 -  {x}^{2} \bigg)x \sqrt{9 -  {x}^{2} }  dx

\rm \:  =  \: \dfrac{2}{3} \displaystyle\int_0^{3}\bigg( 2{x}^{2} + 9  \bigg)x \sqrt{9 -  {x}^{2} }  dx

\rm \:  =  \: \dfrac{2}{3} \displaystyle\int_0^{3}\bigg( 2{x}^{2} + 9  \bigg)\sqrt{9 -  {x}^{2} }   \: xdx

To evaluate this integral, we use Method of Substitution

So, Substitute

\red{\rm :\longmapsto\: \sqrt{9 -  {x}^{2} } = y}

\red{\rm :\longmapsto\:9 -  {x}^{2} =  {y}^{2}}

\red{\rm :\longmapsto\: - 2x \: dx \:  =  \: 2y \: dy}

\red{\rm :\longmapsto\: x \: dx \:  =  \:  -  \: y \: dy}

So, on substituting these values, the above integral can be rewritten as

\rm \:  =  \: \dfrac{2}{3} \displaystyle\int_3^{0}\bigg( 2(9 - {y}^{2}) + 9  \bigg)y   \: ( - y)dy

\rm \:  =  \:  - \dfrac{2}{3} \displaystyle\int_3^{0}\bigg( 18- 2{y}^{2}+ 9  \bigg) {y}^{2} dy

\rm \:  =  \:  - \dfrac{2}{3} \displaystyle\int_3^{0}\bigg( 27 -  2{y}^{2}  \bigg) {y}^{2} dy

\rm \:  =  \:  - \dfrac{2}{3} \displaystyle\int_3^{0}\bigg( 27 {y}^{2}  -  2{y}^{4}  \bigg) dy

\rm \:  =  \: \dfrac{2}{3} \displaystyle\int_0^{3}\bigg( 27 {y}^{2}  -  2{y}^{4}  \bigg) dy

\rm \:  =  \: \dfrac{2}{3}\bigg[\dfrac{27 {y}^{3} }{3} - \dfrac{ {2y}^{5} }{5}  \bigg]_0^{3}

\rm \:  =  \: \dfrac{2}{3}\bigg[9 {y}^{3} - \dfrac{ {2y}^{5} }{5}  \bigg]_0^{3}

\rm \:  =  \: \dfrac{2}{3}\bigg[9 (27) - \dfrac{2 \times 243 }{5}  \bigg]

\rm \:  =  \: \dfrac{2}{3}\bigg[243 - \dfrac{2 \times 243 }{5}  \bigg]

\rm \:  =  \: \dfrac{2}{3} \times 243\bigg[1- \dfrac{2 }{5}  \bigg]

\rm \:  =  \: \dfrac{2}{3} \times 243\bigg[\dfrac{5 - 2 }{5}  \bigg]

\rm \:  =  \: \dfrac{2}{3} \times 243\bigg[\dfrac{3 }{5}  \bigg]

\rm \:  =  \: \dfrac{486}{5}

Similar questions