Math, asked by Anonymous, 10 hours ago


 \displaystyle  \sf \red{\int_{0}^{ \infty}  \frac{ \ln \big( \frac{1 +  {x}^{11} }{1 +  {x}^{3} } \big) }{(1 +  {x}^{2} )  \ln(x) }  \: dx}





Don’t spam...
Otherwise your answers and ID both will be reported to a moderator. ​​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle \sf {\int_{0}^{ \infty} \frac{ \ln \big( \frac{1 + {x}^{11} }{1 + {x}^{3} } \big) }{(1 + {x}^{2} ) \ln(x) } \: dx}

Let assume that

\rm :\longmapsto\:I = \displaystyle \sf {\int_{0}^{ \infty} \frac{ \ln \big( \frac{1 + {x}^{11} }{1 + {x}^{3} } \big) }{(1 + {x}^{2} ) \ln(x) } \: dx}

To, evaluate this integral, we use Method of Substitution.

So, Substitute

\rm :\longmapsto\:x = tany

\rm :\longmapsto\:dx =  {sec}^{2}y \: dy

When we substitute in definite integrals, we have to change the limits too.

So,

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 0 \\ \\ \sf  \infty  & \sf  \dfrac{\pi}{2}  \end{array}} \\ \end{gathered}

So, above integral can be rewritten as

\rm :\longmapsto\:I = \displaystyle \sf {\int_{0}^{ \frac{\pi}{2} } \frac{ \ln \big( \frac{1 + {tan}^{11}y}{1 + {tan}^{3}y} \big) }{(1 + {tan}^{2}y) \ln(tany) } \: {sec}^{2}y dy}

\rm :\longmapsto\:I = \displaystyle \sf {\int_{0}^{ \frac{\pi}{2} } \frac{ \ln \big( \frac{1 + {tan}^{11}y}{1 + {tan}^{3}y} \big) }{({sec}^{2}y) \ln(tany) } \: {sec}^{2}y dy}

\rm :\longmapsto\:I = \displaystyle \sf {\int_{0}^{ \frac{\pi}{2} } \frac{ \ln \big( \frac{1 + {tan}^{11}y}{1 + {tan}^{3}y} \big) }{ \ln(tany) } \: dy} -  -  - (1)

We know,

\boxed{\tt{ \displaystyle \sf {\int_{0}^{a} \: f(x) \: dx \:  =  \: \displaystyle \sf {\int_{0}^{a} \: f(a - x) \: dx} }}}

Now, I can be rewritten as

\rm :\longmapsto\:I = \displaystyle \sf {\int_{0}^{ \frac{\pi}{2} } \frac{ \ln \big( \frac{1 + {tan}^{11}( \frac{\pi}{2} -  y)}{1 + {tan}^{3}(\frac{\pi}{2} - y)} \big) }{ \ln(tan(\frac{\pi}{2} - y)) } \: dy}

We know,

\boxed{\tt{ tan\bigg[\dfrac{\pi}{2}  - y\bigg] = coty \: }}

So, we have

\rm :\longmapsto\:I = \displaystyle \sf {\int_{0}^{ \frac{\pi}{2} } \frac{ \ln \big( \frac{1 + {cot}^{11}y}{1 + {cot}^{3}y} \big) }{ \ln(coty) } \: dy}

\rm :\longmapsto\:I = \displaystyle \sf {\int_{0}^{ \frac{\pi}{2} } \frac{ \ln \big( \frac{1 +  \frac{1}{ {tan}^{11} y} }{1 +  \frac{1}{ {tan}^{3} y} } \big) }{ \ln( {(tany)}^{ - 1} ) } \: dy}

\rm :\longmapsto\:I =  - \displaystyle \sf {\int_{0}^{ \frac{\pi}{2} } \frac{ \ln \big( \frac{1 + {tan}^{11}y}{1 + {tan}^{3}y}  \times  \frac{1}{ {tan}^{8}y } \big) }{ \ln(tany) } \: dy}

\rm :\longmapsto\:I =  - \displaystyle \sf {\int_{0}^{ \frac{\pi}{2} } \frac{ \ln \big( \frac{1 + {tan}^{11}y}{1 + {tan}^{3}y} \big)  - 8ln(tany)}{ \ln(tany) } \: dy}

\rm :\longmapsto\:I = -  \displaystyle \sf {\int_{0}^{ \frac{\pi}{2} } \frac{ \ln \big( \frac{1 + {tan}^{11}y}{1 + {tan}^{3}y} \big) }{ \ln(tany) } \: dy}  + \displaystyle \sf {\int_{0}^{ \frac{\pi}{2}}}8 \: dy

\rm :\longmapsto\:I =  - I  \: + \:  \bigg[8y\bigg]_{0}^{ \dfrac{\pi}{2}}

\rm :\longmapsto\:2I =    8 \times  \dfrac{\pi}{2}

\rm :\longmapsto\:2I =    4\pi

\bf\implies \:I = 2\pi

Hence,

\rm :\longmapsto\:\boxed{\tt{ \displaystyle \sf {\int_{0}^{ \infty} \frac{ \ln \big( \frac{1 + {x}^{11} }{1 + {x}^{3} } \big) }{(1 + {x}^{2} ) \ln(x) } \: dx} = 2\pi \: }}

Similar questions