Math, asked by Sahan677, 6 hours ago

\displaystyle \sf \red{ \int^{\infty}_{0} \bigg(x -  \frac{ {x}^{3} }{2}  + ...  \bigg)\bigg(1 +  \frac{x {}^{2} }{4}  +  ... \bigg) \: dx}

Answers

Answered by MysteriesGirl
17

\\ \bigstar \large \: \sf \textcolor{blue}{ Given \: Expression :- } \\

\\  \quad \bullet \quad \sf \bigg(x - \dfrac{1}{x} \bigg) ^{ \dfrac{1}{2} } + \bigg(1 - \dfrac{1}{x} \bigg)^{ \dfrac{1}{2} }=x \\

This expression can be written as follows :-

\\  \quad \bullet \quad \underline{  \boxed{\sf   \textcolor{Red}{\sqrt{ \bigg(x - \dfrac{1}{x} \bigg)}  +  \sqrt{\bigg(1 - \dfrac{1}{x} \bigg)}=x} }} \frak{ \:  -  -  - (i)}\\

\\ \\large \: \sf \textcolor{Blue}{ Solution :-} \\

Multiply the Above eq (i) with the conjugates of LHS

\\  \quad \longrightarrow \quad \sf   \sqrt{ \bigg(x - \dfrac{1}{x} \bigg)}  +  \sqrt{\bigg(1 - \dfrac{1}{x} \bigg)}  \times \sqrt{ \bigg(x -  \dfrac{1}{x}   \bigg)} -  \sqrt{ \bigg( 1 -  \dfrac{1}{x} \bigg)}  =x  \times \sqrt{ \bigg(x -  \dfrac{1}{x}   \bigg)} -  \sqrt{ \bigg( 1 -  \dfrac{1}{x} \bigg)} \\

 \\  \quad \longrightarrow \quad \sf  \bigg[\sqrt{ \bigg(x -  \dfrac{1}{x}   \bigg)} \bigg]^{2}  -  \bigg[\sqrt{ \bigg( 1 -  \dfrac{1}{x} \bigg)}\bigg]^{2}  = x \times \sqrt{ \bigg(x -  \dfrac{1}{x}   \bigg)} -  \sqrt{ \bigg( 1 -  \dfrac{1}{x} \bigg)} \\

 \\  \quad \longrightarrow \quad \sf \bigg(x -  \dfrac{1}{x}   \bigg)-  \bigg( 1 -  \dfrac{1}{x} \bigg) = x \times \sqrt{ \bigg(x -  \dfrac{1}{x}   \bigg)} -  \sqrt{ \bigg( 1 -  \dfrac{1}{x} \bigg)} \\

 \\  \quad \longrightarrow \quad \sf  \frac{x - 1}{x}  = \sqrt{ \bigg(x -  \dfrac{1}{x}   \bigg)} -  \sqrt{ \bigg( 1 -  \dfrac{1}{x} \bigg)} \\

 \\  \quad \longrightarrow \quad \sf  1 -  \frac{1}{x}   = \sqrt{ \bigg(x -  \dfrac{1}{x}   \bigg)} -  \sqrt{ \bigg( 1 -  \dfrac{1}{x} \bigg)} \\

  \\  \quad \longrightarrow \quad  \underline{\boxed{ \sf \textcolor{red}{\sqrt{ \bigg(x -  \dfrac{1}{x}   \bigg)} -  \sqrt{ \bigg( 1 -  \dfrac{1}{x} \bigg)} = 1 -  \frac{1}{x} }}} \frak{ \:  -  -  - (ii)} \\

Now, by adding equations (i) and (ii) we get :-

 \\  \quad \longrightarrow \quad  \underline{\boxed{ \sf \textcolor{red}{2\sqrt{ \bigg(x -  \dfrac{1}{x}   \bigg)}  =  x -  \frac{1}{x}  + 1}}} \frak{ \:  -  -  - (iii)} \\

 \\ \bigstar\large \: \sf \textcolor{Black}{ Assume \: The \: Following :-} \\

 \quad \mapsto \quad \sf \sqrt{ \bigg(x -  \dfrac{1}{x}   \bigg)}  = a \\

 \quad \therefore \quad \sf  \bigg(x -  \dfrac{1}{x}   \bigg)  =  {a}^{2}  \\

Now, substituting the above values in equation (iii) , we get

 \\  \quad \longrightarrow  \quad \sf 2a =  {a}^{2}  + 1 \\

 \\  \quad \longrightarrow \quad \sf  {a}^{2}  - 2a + 1 = 0 \\

 \quad \longrightarrow \quad \sf  {(a - 1)}^{2}  = 0 \\

 \\  \quad \longrightarrow \quad  \boxed{\sf \textcolor{red}{a =  \pm 1}} \\

Now,

 \\ \quad :  \implies \quad \sf \sqrt{ \bigg(x -  \dfrac{1}{x}   \bigg)}  = a \\

 \\ \quad  : \implies \quad \sf  \bigg(x -  \dfrac{1}{x}   \bigg)  = 1 \\

 \\ \quad :  \implies \quad \sf   {x}^{2}  - 1    = x \\

\\ \quad :  \implies \quad \sf   {x}^{2}  - x - 1    = 0 \\

\\ \quad :  \implies \quad \sf   x  =  \dfrac{ - ( - 1) \pm   \sqrt{ { ( - 1)}^{2}  - 4( - 1)(1)}  }{2}  \\

\\ \quad  \therefore \quad  \boxed{\frak{  \textcolor{Red}{ x  =  \dfrac{ 1 \pm   \sqrt{5}  }{2}}}} \bigstar  \\

______________________________

Similar questions