Math, asked by Anonymous, 23 days ago

 \displaystyle \sf  \red{\lim_{n \to \infty} \frac{1}{n} \biggl \{ \displaystyle{\sf \prod_{r = 1} ^{n}} \sf (m + r) \biggl \} {}^{ \frac{1}{n} } }

Answers

Answered by mathdude500
24

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle \sf {\lim_{n \to \infty} \frac{1}{n} \biggl \{ \displaystyle{\sf \prod_{r = 1} ^{n}} \sf (m + r) \biggl \} {}^{ \frac{1}{n} } }

Let assume that

\rm :\longmapsto\:y = \displaystyle \sf {\lim_{n \to \infty} \frac{1}{n} \biggl \{ \displaystyle{\sf \prod_{r = 1} ^{n}} \sf (m + r) \biggl \} {}^{ \frac{1}{n} } }

can be rewritten as

\rm :\longmapsto\:y = \displaystyle \lim_{n \to \infty} \frac{1}{n} \biggl \{ (m + 1)(m + 2). \: . \: . \: .(m + n) \bigg\} {}^{ \dfrac{1}{n} }

\rm :\longmapsto\:y = \displaystyle \lim_{n \to \infty}\biggl \{ \dfrac{(m + 1)(m + 2). \: . \: . \: .(m + n)}{ {n}^{n} }  \bigg\} {}^{ \dfrac{1}{n} }

can be further rewritten as

\rm :\longmapsto\:y = \displaystyle \lim_{n \to \infty}\biggl \{ \dfrac{(m + 1)(m + 2). \: . \: . \: .(m + n)}{n.n....n}  \bigg\} {}^{ \dfrac{1}{n} }

\rm :\longmapsto\:y = \displaystyle \lim_{n \to \infty}\biggl \{\dfrac{m + 1}{n} .\dfrac{m + 2}{n}  -  -  -\dfrac{m + n}{n} \bigg\} {}^{ \dfrac{1}{n} }

Now, taking log on both sides, we get

\rm :\longmapsto\:logy = log\displaystyle \lim_{n \to \infty}\biggl \{\dfrac{m + 1}{n} .\dfrac{m + 2}{n}  -  -  -\dfrac{m + n}{n} \bigg\} {}^{ \dfrac{1}{n} }

\rm :\longmapsto\:logy = \displaystyle \lim_{n \to \infty}log\biggl \{\dfrac{m + 1}{n} .\dfrac{m + 2}{n}  -  -  -\dfrac{m + n}{n} \bigg\} {}^{ \dfrac{1}{n} }

\rm :\longmapsto\:logy = \displaystyle \lim_{n \to \infty}log\biggl \{\dfrac{m + 1}{n} .\dfrac{m + 2}{n}  -  -  -\dfrac{m + n}{n} \bigg\} {}^{ \dfrac{1}{n} }

\rm :\longmapsto\:logy = \displaystyle \lim_{n \to \infty} \frac{1}{n} log\biggl \{\dfrac{m + 1}{n} .\dfrac{m + 2}{n}  -  -  -\dfrac{m + n}{n} \bigg\} {}^{}

\rm :\longmapsto\:logy = \displaystyle \lim_{n \to \infty} \frac{1}{n} \biggl \{log\dfrac{m + 1}{n} + log\dfrac{m + 2}{n} +  -  - log\dfrac{m + n}{n} \bigg\} {}^{}

which can be rewritten as

\rm :\longmapsto\:logy = \displaystyle \lim_{n \to \infty} \frac{1}{n} \displaystyle\sum_{r=1}^n\biggl \{log\dfrac{m + r}{n} \bigg\}

Now, We consider 3 different cases.

Case :- 1 When m = n

The above expression can be rewritten as

\rm :\longmapsto\:logy = \displaystyle \lim_{n \to \infty} \frac{1}{n} \displaystyle\sum_{r=1}^n\biggl \{log\dfrac{n + r}{n} \bigg\}

\rm :\longmapsto\:logy = \displaystyle \lim_{n \to \infty} \frac{1}{n} \displaystyle\sum_{r=1}^nlog\biggl \{1 + \dfrac{r}{n} \bigg\}

Now, using Limit as a sum from definite integrals, we have

\rm :\longmapsto\:logy = \displaystyle\int_{0}^1log\biggl \{1 + x \bigg\} \: dx

Now, to evaluate this integral, we use Method of Substitution.

So, Substitute

\rm :\longmapsto\:1 + x = z

\rm :\longmapsto\:dx = dz

So, above integral can be rewritten as

\rm :\longmapsto\:logy = \displaystyle\int_{1}^2logz \: dz

Now, using integration by parts, we get

\rm :\longmapsto\:logy =  \bigg|z \: logz - z\bigg| _{1}^2

\rm :\longmapsto\:logy =  2 \: log2 - 2 - (0 - 1)

\rm :\longmapsto\:logy = \: log {2}^{2}  - 1

\rm :\longmapsto\:logy = \: log 4 - loge

\rm :\longmapsto\:logy = \: log  \dfrac{4}{e}

\bf\implies \:y = \dfrac{4}{e}

Hence,

 \red{\bf\implies \:\boxed{\tt{ \:\displaystyle \sf {\lim_{n \to \infty} \frac{1}{n} \biggl \{ \displaystyle{\sf \prod_{r = 1} ^{n}} \sf (m + r) \biggl \} {}^{ \dfrac{1}{n} } }  \: =   \: \frac{4}{e} \:  \: }}}

Case :- 2 When m < n

\rm :\longmapsto\:logy = \displaystyle \lim_{n \to \infty} \frac{1}{n} \displaystyle\sum_{r=1}^nlog\biggl \{\dfrac{m + r}{n} \bigg\}

On substituting m = n - h, we get

\rm :\longmapsto\:logy = \displaystyle \lim_{n \to \infty} \frac{1}{n} \displaystyle\sum_{r=1}^nlog\biggl \{\dfrac{n - h + r}{n} \bigg\}

\rm :\longmapsto\:logy = \displaystyle \lim_{n \to \infty} \frac{1}{n} \displaystyle\sum_{r=1}^nlog\biggl \{1 -  \frac{h}{n}  + \dfrac{r}{n} \bigg\}

It implies, Limit doesnot exist.

Case :- 3 When m > n

\rm :\longmapsto\:logy = \displaystyle \lim_{n \to \infty} \frac{1}{n} \displaystyle\sum_{r=1}^nlog\biggl \{\dfrac{m + r}{n} \bigg\}

Substitute m = n + h, we get

\rm :\longmapsto\:logy = \displaystyle \lim_{n \to \infty} \frac{1}{n} \displaystyle\sum_{r=1}^nlog\biggl \{\dfrac{n  +  h + r}{n} \bigg\}

\rm :\longmapsto\:logy = \displaystyle \lim_{n \to \infty} \frac{1}{n} \displaystyle\sum_{r=1}^nlog\biggl \{1 +  \frac{h}{n}  + \dfrac{r}{n} \bigg\}

It implies, Limit doesnot exist.

Answered by OoAryanKingoO78
2

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle \sf {\lim_{n \to \infty} \frac{1}{n} \biggl \{ \displaystyle{\sf \prod_{r = 1} ^{n}} \sf (m + r) \biggl \} {}^{ \frac{1}{n} } }

Let assume that

\rm :\longmapsto\:y = \displaystyle \sf {\lim_{n \to \infty} \frac{1}{n} \biggl \{ \displaystyle{\sf \prod_{r = 1} ^{n}} \sf (m + r) \biggl \} {}^{ \frac{1}{n} } }

can be rewritten as

\rm :\longmapsto\:y = \displaystyle \lim_{n \to \infty} \frac{1}{n} \biggl \{ (m + 1)(m + 2). \: . \: . \: .(m + n) \bigg\} {}^{ \dfrac{1}{n} }

\rm :\longmapsto\:y = \displaystyle \lim_{n \to \infty}\biggl \{ \dfrac{(m + 1)(m + 2). \: . \: . \: .(m + n)}{ {n}^{n} }  \bigg\} {}^{ \dfrac{1}{n} }

can be further rewritten as

\rm :\longmapsto\:y = \displaystyle \lim_{n \to \infty}\biggl \{ \dfrac{(m + 1)(m + 2). \: . \: . \: .(m + n)}{n.n....n}  \bigg\} {}^{ \dfrac{1}{n} }

\rm :\longmapsto\:y = \displaystyle \lim_{n \to \infty}\biggl \{\dfrac{m + 1}{n} .\dfrac{m + 2}{n}  -  -  -\dfrac{m + n}{n} \bigg\} {}^{ \dfrac{1}{n} }

Now, taking log on both sides, we get

\rm :\longmapsto\:logy = log\displaystyle \lim_{n \to \infty}\biggl \{\dfrac{m + 1}{n} .\dfrac{m + 2}{n}  -  -  -\dfrac{m + n}{n} \bigg\} {}^{ \dfrac{1}{n} }

\rm :\longmapsto\:logy = \displaystyle \lim_{n \to \infty}log\biggl \{\dfrac{m + 1}{n} .\dfrac{m + 2}{n}  -  -  -\dfrac{m + n}{n} \bigg\} {}^{ \dfrac{1}{n} }

\rm :\longmapsto\:logy = \displaystyle \lim_{n \to \infty}log\biggl \{\dfrac{m + 1}{n} .\dfrac{m + 2}{n}  -  -  -\dfrac{m + n}{n} \bigg\} {}^{ \dfrac{1}{n} }

\rm :\longmapsto\:logy = \displaystyle \lim_{n \to \infty} \frac{1}{n} log\biggl \{\dfrac{m + 1}{n} .\dfrac{m + 2}{n}  -  -  -\dfrac{m + n}{n} \bigg\} {}^{}

\rm :\longmapsto\:logy = \displaystyle \lim_{n \to \infty} \frac{1}{n} \biggl \{log\dfrac{m + 1}{n} + log\dfrac{m + 2}{n} +  -  - log\dfrac{m + n}{n} \bigg\} {}^{}

which can be rewritten as

\rm :\longmapsto\:logy = \displaystyle \lim_{n \to \infty} \frac{1}{n} \displaystyle\sum_{r=1}^n\biggl \{log\dfrac{m + r}{n} \bigg\}

Now, We consider 3 different cases.

Case :- 1 When m = n

The above expression can be rewritten as

\rm :\longmapsto\:logy = \displaystyle \lim_{n \to \infty} \frac{1}{n} \displaystyle\sum_{r=1}^n\biggl \{log\dfrac{n + r}{n} \bigg\}

\rm :\longmapsto\:logy = \displaystyle \lim_{n \to \infty} \frac{1}{n} \displaystyle\sum_{r=1}^nlog\biggl \{1 + \dfrac{r}{n} \bigg\}

Now, using Limit as a sum from definite integrals, we have

\rm :\longmapsto\:logy = \displaystyle\int_{0}^1log\biggl \{1 + x \bigg\} \: dx

Now, to evaluate this integral, we use Method of Substitution.

So, Substitute

\rm :\longmapsto\:1 + x = z

\rm :\longmapsto\:dx = dz

So, above integral can be rewritten as

\rm :\longmapsto\:logy = \displaystyle\int_{1}^2logz \: dz

Now, using integration by parts, we get

\rm :\longmapsto\:logy =  \bigg|z \: logz - z\bigg| _{1}^2

\rm :\longmapsto\:logy =  2 \: log2 - 2 - (0 - 1)

\rm :\longmapsto\:logy = \: log {2}^{2}  - 1

\rm :\longmapsto\:logy = \: log 4 - loge

\rm :\longmapsto\:logy = \: log  \dfrac{4}{e}

\bf\implies \:y = \dfrac{4}{e}

Hence,

 \purple{\bf\implies \:\boxed{\tt{ \:\displaystyle \sf {\lim_{n \to \infty} \frac{1}{n} \biggl \{ \displaystyle{\sf \prod_{r = 1} ^{n}} \sf (m + r) \biggl \} {}^{ \dfrac{1}{n} } }  \: =   \: \frac{4}{e} \:  \: }}}

Case :- 2 When m < n

\rm :\longmapsto\:logy = \displaystyle \lim_{n \to \infty} \frac{1}{n} \displaystyle\sum_{r=1}^nlog\biggl \{\dfrac{m + r}{n} \bigg\}

On substituting m = n - h, we get

\rm :\longmapsto\:logy = \displaystyle \lim_{n \to \infty} \frac{1}{n} \displaystyle\sum_{r=1}^nlog\biggl \{\dfrac{n - h + r}{n} \bigg\}

\rm :\longmapsto\:logy = \displaystyle \lim_{n \to \infty} \frac{1}{n} \displaystyle\sum_{r=1}^nlog\biggl \{1 -  \frac{h}{n}  + \dfrac{r}{n} \bigg\}

It implies, Limit doesnot exist.

Similar questions