Math, asked by santoshgupta9495, 20 days ago

 \displaystyle \sf \red{\lim_{n \to \infty } \frac{ \sqrt[ {n}^{2} ]{1! \times 2! \times 3! \cdot \cdot \cdot \cdot \times n!} }{ \sqrt{n} } }​​

Answers

Answered by UB12345678
2

_______________________________

 \displaystyle \sf \pink{\lim_{n \to \infty } \frac{ \sqrt[ {n}^{2} ]{1! \times 2! \times 3! \cdot \cdot \cdot \cdot \times n!} }{ \sqrt{n} } }

 \displaystyle \sf \blue{\lim_{n \to \infty } \frac{ \sqrt[ {n}^{2} ]{1! \times 2! \times 3! \cdot \cdot \cdot \cdot \times n!} }{ \sqrt{n} } }

 \displaystyle \sf \orange{\lim_{n \to \infty } \frac{ \sqrt[ {n}^{2} ]{1! \times 2! \times 3! \cdot \cdot \cdot \cdot \times n!} }{ \sqrt{n} } }

 \displaystyle \sf \green{\lim_{n \to \infty } \frac{ \sqrt[ {n}^{2} ]{1! \times 2! \times 3! \cdot \cdot \cdot \cdot \times n!} }{ \sqrt{n} } }

 \displaystyle \sf \gray{\lim_{n \to \infty } \frac{ \sqrt[ {n}^{2} ]{1! \times 2! \times 3! \cdot \cdot \cdot \cdot \times n!} }{ \sqrt{n} } }

 \displaystyle \sf \purple{\lim_{n \to \infty } \frac{ \sqrt[ {n}^{2} ]{1! \times 2! \times 3! \cdot \cdot \cdot \cdot \times n!} }{ \sqrt{n} } }

 \displaystyle \sf \orange{\lim_{n \to \infty } \frac{ \sqrt[ {n}^{2} ]{1! \times 2! \times 3! \cdot \cdot \cdot \cdot \times n!} }{ \sqrt{n} } }

 \displaystyle \sf \red{\lim_{n \to \infty } \frac{ \sqrt[ {n}^{2} ]{1! \times 2! \times 3! \cdot \cdot \cdot \cdot \times n!} }{ \sqrt{n} } }

______________________________

Similar questions