Math, asked by Anonymous, 6 hours ago

 \displaystyle \sf \red{ \lim_{x \to \infty} \frac{ {3x}^{5} + 21 {x}^{3} }{7 {x}^{5} - 18x + 4 } }​​

Answers

Answered by senboni123456
5

Step-by-step explanation:

We have,

 \displaystyle \lim_{x \to \infty } \:  \dfrac{3 {x}^{5}  + 21 {x}^{3} }{7 {x}^{5} - 18x + 4 }

 \displaystyle =  \lim_{x \to \infty } \:  \dfrac{ {x}^{5} \left( 3   +  \dfrac{21}{ {x}^{2} } \right) }{ {x}^{5} \left( 7 - \dfrac{ 18}{ {x}^{4} } + \dfrac{ 4}{ {x}^{5} } \right) }

 \displaystyle =  \lim_{x \to \infty } \:  \dfrac{ 3   +  \dfrac{21}{ {x}^{2} }  }{  7 - \dfrac{ 18}{ {x}^{4} } + \dfrac{ 4}{ {x}^{5} }  }

 \displaystyle =    \dfrac{ 3   + 0 }{  7 - 0+ 0 }

 \displaystyle =    \dfrac{ 3   }{  7  }

Answered by OoAryanKingoO78
2

Answer:

We have,

 \displaystyle \lim_{x \to \infty } \:  \dfrac{3 {x}^{5}  + 21 {x}^{3} }{7 {x}^{5} - 18x + 4 }

 \displaystyle =  \lim_{x \to \infty } \:  \dfrac{ {x}^{5} \left( 3   +  \dfrac{21}{ {x}^{2} } \right) }{ {x}^{5} \left( 7 - \dfrac{ 18}{ {x}^{4} } + \dfrac{ 4}{ {x}^{5} } \right) }

 \displaystyle =  \lim_{x \to \infty } \:  \dfrac{ 3   +  \dfrac{21}{ {x}^{2} }  }{  7 - \dfrac{ 18}{ {x}^{4} } + \dfrac{ 4}{ {x}^{5} }  }

 \displaystyle =    \dfrac{ 3   + 0 }{  7 - 0+ 0 }

 \displaystyle =    \dfrac{ 3   }{  7  }

Similar questions