CBSE BOARD XII, asked by saichavanusa12, 11 hours ago


\displaystyle  \sf { solve}

\displaystyle \lim_{x \to 2} \frac{x^2-4}{x-2}


\mathcal{BE \: BRAINLY}
No Spam.​

Answers

Answered by user0888
29

\large\text{\underline{Answer}}

\large 4

\large\text{\underline{Explanation}}

If we directly substitute the value, it is in the form of \dfrac{0}{0}.

\boxed{\text{$\dfrac{x^2-4}{x-2}$ at $x=2$ does not exist.}}

By use of the properties of limits, we can eliminate the common factor existing in the fraction.

\boxed{\begin{aligned}\displaystyle\lim_{x\to2}\dfrac{x^2-4}{x-2}&=\displaystyle\lim_{x\to2}\dfrac{(x+2)\cancel{(x-2)}}{\cancel{x-2}}\\\\&=\displaystyle\lim_{x\to2}(x+2)\ [\because\lim_{x\to a}f(x)g(x)=\lim_{x\to a}f(x)\lim_{x\to a}g(x)]\\\\&=4\end{aligned}}

\large\text{\underline{Extra explanation}}

If the given function approaches x=a from the left, the value it approaches is called the LHL(left-hand limit).

\cdots\longrightarrow\displaystyle\text{$\lim_{x\to a-}f(x)$ is the LHL.}

In the same manner, if the given function approaches from the right, the value it approaches is called the RHL(right-hand limit).

\cdots\longrightarrow\displaystyle\text{$\lim_{x\to a+}f(x)$ is the RHL.}

When \text{LHL = RHL}, the limit exists.

\cdots\longrightarrow\displaystyle\text{$\lim_{x\to a}f(x)$ is the limit.}

When \text{LHL $\neq$ RHL}, the limit does not exist.

\cdots\longrightarrow\displaystyle\text{Limit does not exist if $\lim_{x\to a-}f(x)\neq\lim_{x\to a+}f(x)$.}

Answered by RhythmVats
1

Answer:

Multiplynumeratoranddenominatorby(

x+2

+

3x−2

)

wewillget

⇒lt

x→2

(

x+2

3x−2

)×(

x+2

+

3x−2

)

(x

2

−4)(

x+2

+

3x−2

)

⇒lt

x→2

x+2−(3x−2)

(x

2

−4)(

x+2

+

3x−2

)

⇒lt

x→2

−2x+4

(x−2)(x+2)(

x+2

+

3x−2

)

⇒lt

x→2

−2

(x+2)(

x+2

+

3x−2

)

−2

(2+2)(

2+2

+

6−2

)

=

−2

4×4

=−8

Similar questions