Math, asked by Anonymous, 7 hours ago

 \displaystyle \sf \sum \limits^{ \infty}_{a = 2} \sum \limits^{ \infty}_{b = 1} \int ^{ \infty}_{0} \frac{ {x}^{b} }{( {e}^{ax} )(b!)}   \: dx

Answers

Answered by IamIronMan0
104

\huge\orange{\frac{\pi^2}{6}+1}

Step-by-step explanation:

First let's take integral part

\int ^{ \infty}_{0} \frac{ {x}^{b} }{( {e}^{ax} )(b!)} \: dx \\  \\ put \: ax = y \:  \implies \: dx =  \frac{dy}{a}  \\  \\  \int ^{ \infty}_{0} \frac{ {( \frac{y}{a}) }^{b} }{( {e}^{y} )(b!)} \:  \frac{dy}{a}  \\  \\  =  \frac{1}{ {a}^{b + 1}.b! }  \int ^{ \infty}_{0}  {y}^{b}  {e}^{ - y} dy \\  \\ using \: gamma \: function \\  \\  =  \frac{(b + 1)!}{ {a}^{b + 1}. b!}  \\  \\  =  \frac{b + 1}{ {a}^{b + 1} }

Now our question is reduced to

\displaystyle \sf \sum \limits^{ \infty}_{a = 2} \sum \limits^{ \infty}_{b = 1}  \frac{b + 1}{ {a}^{b + 1} }

Let

let \: z =  \frac{1}{a}  < 1 \: then \:series \\  \\ s = z +  {z}^{2}  + ...  =  \frac{ z }{1 - z} \\ \\ differentiate \: wrt \: z \\  \\ 1 + 2z + 3 {z}^{2}  + .... =  \frac{(1 - z) + z}{(1 - z) {}^{2} }   \\  \\ multiply \: both \: sides \: with \: z \\  \\ z + 2 {z}^{2}  + 3 {z}^{3}  + .... =  \frac{z}{(1 - z) {}^{2} }  \\  \\  put \: z =  \frac{1}{a}  \\  \\  \frac{1}{a}  +  \frac{2}{ {a}^{2} }  +  \frac{3}{ {a}^{3} }  + .... =  \frac{( \frac{1}{a} )}{(1 -  \frac{1}{a}) {}^{2}  }  =  \frac{ {a}^{2} }{(a - 1) {}^{2} }  \\  \implies \\  \frac{2}{a {}^{2} }  +  \frac{3}{ {a}^{3} }  + .... = \frac{ {a}^{2} }{(a - 1) {}^{2} } -  \frac{1}{a}  \\   \implies \\ \\  \sum \limits^{ \infty}_{b = 1}  \frac{b + 1}{ {a}^{b + 1} }  =  \frac{a{}^{2} -  {a}^{2} + 2a - 1  }{a(a - 1) {}^{2} }

Put the value in summation we left with

 \\  \\  =  \sum \limits^{ \infty}_{a = 2}  \frac{  2a - 1}{  {a}(a-1)^2}

\red{Rest \: solution \: is\: in \:picture}

Attachments:
Similar questions