India Languages, asked by ltz12, 3 months ago

\displaystyle\sf x = 3+2\sqrt{2}
\displaystyle\sf \sqrt{x}-\dfrac{1}{\sqrt{x}}??

Answers

Answered by OoINTROVERToO
13

 \displaystyle\sf x = 3+2\sqrt{2}

 \displaystyle\sf \sqrt{x}-\dfrac{1}{\sqrt{x}}

÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷

 \begin{gathered}\displaystyle\sf :\implies \dfrac{1}{x} = \dfrac{1}{3+2\sqrt{2}}\\\end{gathered}

 \displaystyle\sf :\implies \dfrac{1}{3+2\sqrt{2}}\times \dfrac{3-2\sqrt{2}}{3-2\sqrt{2}}

 \displaystyle\sf :\implies \dfrac{3-2\sqrt{2}}{3^2-(2\sqrt{2}^2)}

 \displaystyle\sf :\implies \dfrac{3-2\sqrt{2}}{9-8}

 \displaystyle\sf :\implies \dfrac{1}{x} = 3-2\sqrt{2}

°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

 \displaystyle\sf :\implies x+\dfrac{1}{x} = (3+2\sqrt{2}) + (3-2\sqrt{2})

 \displaystyle\sf :\implies x+\dfrac{1}{x} = 3+2\sqrt{2} + 3 - 2\sqrt{2}

 \displaystyle\sf :\implies x+\dfrac{1}{x}

So here we know that we may split the number 6 into 4+2 and 4+2 = 6

 \displaystyle\sf :\implies x+\dfrac{1}{x} = 4

 \displaystyle\sf :\implies x+\dfrac{1}{x}-2 = 4

 \displaystyle\sf :\implies \bigg\lgroup \sqrt{x}-\dfrac{1}{\sqrt{x}}\bigg\rgroup^2 = 4

 \displaystyle\sf :\implies \sqrt{x}-\dfrac{1}{\sqrt{x}} = \sqrt{4}

 \displaystyle\sf :\implies \sqrt{x}-\dfrac{1}{\sqrt{x}} = \pm 2

 \displaystyle\therefore\:\underline{\textsf{The value of $ \sqrt{ \sf x}-\dfrac{\sf 1}{\sqrt{\sf x}}$ is \textbf{$\pm$2 }}}

Answered by SmokyPsycho
0

Answer:

For the purpose of census 2011, a person aged seven and above, who can both read and write with understanding in any language, is treated as literate. A person, who can only read but cannot write, is not literate.

Similar questions