Math, asked by sajan6491, 6 hours ago

 \displaystyle \sum \limits_{k = 1}^{2020}  \frac{1}{ \sin(k) \degree  \sin(k + 1) \degree }

DON'T SPAM ​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle \sum \limits_{k = 1}^{2020} \frac{1}{ \sin(k) \degree \sin(k + 1) \degree }

can be rewritten as

\rm \:  =  \:\dfrac{1}{sin1\degree }  \displaystyle \sum \limits_{k = 1}^{2020} \frac{sin1\degree }{ \sin(k) \degree \sin(k + 1) \degree }

\rm \:  =  \:\dfrac{1}{sin1\degree }  \displaystyle \sum \limits_{k = 1}^{2020} \frac{sin(k + 1 - k)\degree }{ \sin(k) \degree \sin(k + 1) \degree }

We know,

\boxed{\tt{ sin(x - y) = sinx \: cosy \:  -  \: siny \: cosx \: }}

So, using this identity, we get

\rm \:  =  \: \dfrac{1}{sin1\degree }\displaystyle \sum \limits_{k = 1}^{2020} \frac{sin(k + 1)\degree cos(k)\degree  - sin(k)\degree cos(k + 1)\degree }{ \sin(k) \degree \sin(k + 1) \degree }

\rm \:  =  \: \dfrac{1}{sin1\degree }\displaystyle \sum \limits_{k = 1}^{2020} \bigg[\frac{sin(k + 1)\degree cos(k)\degree}{ \sin(k) \degree \sin(k + 1) \degree } - \dfrac{ sin(k)\degree cos(k + 1)\degree }{sin(k)\degree sin(k + 1)\degree }\bigg]

\rm \:  =  \: \dfrac{1}{sin1\degree }\displaystyle \sum \limits_{k = 1}^{2020} \bigg[tan(k + 1)\degree  - tan(k)\degree \bigg]

\rm \:  =  \: \dfrac{1}{sin1\degree } \bigg[(tan(2)\degree  - tan(1)\degree) + (tan(3)\degree  - tan(2)\degree ) +  -  -  -  + (tan(2021)\degree  - tan(2020)\degree ) \bigg]

\rm \:  =  \: \dfrac{1}{sin1\degree } \bigg[tan(2021)\degree  - tan(1)\degree\bigg]

\rm \:  =  \: \dfrac{1}{sin1\degree } \bigg[\dfrac{sin2021\degree }{cos2021\degree }  - \dfrac{sin1\degree }{cos1\degree } \bigg]

\rm \:  =  \: \dfrac{1}{sin1\degree } \bigg[\dfrac{sin2021\degree  \: cos1\degree  - sin1\degree  \: cos2021\degree }{cos2021\degree  \: cos1\degree }   \bigg]

\rm \:  =  \: \dfrac{1}{sin1\degree } \bigg[\dfrac{sin(2021 \:  - 1)\degree }{cos2021\degree  \: cos1\degree }   \bigg]

\rm \:  =  \: \dfrac{1}{sin1\degree } \bigg[\dfrac{sin(2020)\degree }{cos2021\degree  \: cos1\degree }   \bigg]

\rm \:  =  \: \dfrac{sin(2020)\degree }{sin(1)\degree  \: cos(1)\degree  \: cos(2021)\degree }

Hence,

\boxed{\tt{ \rm \:\displaystyle \sum \limits_{k = 1}^{2020} \frac{1}{ \sin(k) \degree \sin(k + 1) \degree }  =  \: \dfrac{sin(2020)\degree }{sin(1)\degree  \: cos(1)\degree  \: cos(2021)\degree } }}

Answered by OoAryanKingoO78
2

Answer:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle \sum \limits_{k = 1}^{2020} \frac{1}{ \sin(k) \degree \sin(k + 1) \degree }

can be rewritten as

\rm \:  =  \:\dfrac{1}{sin1\degree }  \displaystyle \sum \limits_{k = 1}^{2020} \frac{sin1\degree }{ \sin(k) \degree \sin(k + 1) \degree }

\rm \:  =  \:\dfrac{1}{sin1\degree }  \displaystyle \sum \limits_{k = 1}^{2020} \frac{sin(k + 1 - k)\degree }{ \sin(k) \degree \sin(k + 1) \degree }

We know,

\boxed{\tt{ sin(x - y) = sinx \: cosy \:  -  \: siny \: cosx \: }}

So, using this identity, we get

\rm \:  =  \: \dfrac{1}{sin1\degree }\displaystyle \sum \limits_{k = 1}^{2020} \frac{sin(k + 1)\degree cos(k)\degree  - sin(k)\degree cos(k + 1)\degree }{ \sin(k) \degree \sin(k + 1) \degree }

\rm \:  =  \: \dfrac{1}{sin1\degree }\displaystyle \sum \limits_{k = 1}^{2020} \bigg[\frac{sin(k + 1)\degree cos(k)\degree}{ \sin(k) \degree \sin(k + 1) \degree } - \dfrac{ sin(k)\degree cos(k + 1)\degree }{sin(k)\degree sin(k + 1)\degree }\bigg]

\rm \:  =  \: \dfrac{1}{sin1\degree }\displaystyle \sum \limits_{k = 1}^{2020} \bigg[tan(k + 1)\degree  - tan(k)\degree \bigg]

\rm \:  =  \: \dfrac{1}{sin1\degree } \bigg[(tan(2)\degree  - tan(1)\degree) + (tan(3)\degree  - tan(2)\degree ) +  -  -  -  + (tan(2021)\degree  - tan(2020)\degree ) \bigg]

\rm \:  =  \: \dfrac{1}{sin1\degree } \bigg[tan(2021)\degree  - tan(1)\degree\bigg]

\rm \:  =  \: \dfrac{1}{sin1\degree } \bigg[\dfrac{sin2021\degree }{cos2021\degree }  - \dfrac{sin1\degree }{cos1\degree } \bigg]

\rm \:  =  \: \dfrac{1}{sin1\degree } \bigg[\dfrac{sin2021\degree  \: cos1\degree  - sin1\degree  \: cos2021\degree }{cos2021\degree  \: cos1\degree }   \bigg]

\rm \:  =  \: \dfrac{1}{sin1\degree } \bigg[\dfrac{sin(2021 \:  - 1)\degree }{cos2021\degree  \: cos1\degree }   \bigg]

\rm \:  =  \: \dfrac{1}{sin1\degree } \bigg[\dfrac{sin(2020)\degree }{cos2021\degree  \: cos1\degree }   \bigg]

\rm \:  =  \: \dfrac{sin(2020)\degree }{sin(1)\degree  \: cos(1)\degree  \: cos(2021)\degree }

Hence,

\boxed{\tt{ \rm \:\displaystyle \sum \limits_{k = 1}^{2020} \frac{1}{ \sin(k) \degree \sin(k + 1) \degree }  =  \: \dfrac{sin(2020)\degree }{sin(1)\degree  \: cos(1)\degree  \: cos(2021)\degree } }}

\purple{\rule{45pt}{7pt}}\red{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}

Similar questions