Math, asked by Anonymous, 1 year ago

\displaystyle \text{Give answer if you know only}\\\\\\\displaystyle \text{Number of integers satisfying the inequalities }\\\\\\\displaystyle{\sqrt{\log_3x-1}+\left(\dfrac{\dfrac{1}{2}\log_3x^3 }{\log_3\dfrac{1}{3}}\right)+2 \ \  \textgreater \ 0 \ is}\\\\\\\displaystyle \text{Options are :}\\\\\\\displaystyle \text{a. \ 5}\\\\\\\displaystyle \text{b. \ 6}\\\\\\\displaystyle \text{ c. \ 7}\\\\\\\displaystyle \text{d. \ 8}\\\\\\\displaystyle \text{Kindly give good and contain quality answer with great explanation.}

Answers

Answered by shadowsabers03
14

\begin{aligned}&\sqrt{\log_3(x)-1}+\left(\dfrac{\dfrac{1}{2}\log_3(x^3)}{\log\left(\dfrac{1}{3}\right)}\right)+2>0\\ \\ \Longrightarrow\ \ &\sqrt{\log_3(x)-1}+\left(\dfrac{\dfrac{1}{2}\cdot3\log_3(x)}{\log\left(3^{^{-1}}\right)}\right)+2>0\\ \\ \Longrightarrow\ \ &\sqrt{\log_3(x)-1}+\left(\dfrac{\dfrac{3}{2}\log_3(x)}{-1}\right)+2>0\\ \\ \Longrightarrow\ \ &\sqrt{\log_3(x)-1}-\dfrac{3}{2}\log_3(x)+2>0\end{aligned}

\textsf{Let}\ \ \log_3(x)=k.\\ \\ \\ \begin{aligned}\Longrightarrow\ \ &\sqrt{k-1}-\dfrac{3}{2}k+2>0\\ \\ \Longrightarrow\ \ &\sqrt{k-1}>\dfrac{3}{2}k-2\\ \\ \Longrightarrow\ \ &k-1>\left(\dfrac{3}{2}k-2\right)^2\\ \\ \Longrightarrow\ \ &k-1>\dfrac{9}{4}k^2-6k+4\\ \\ \Longrightarrow\ \ &\dfrac{9}{4}k^2-6k+4-k+1<0\\ \\ \Longrightarrow\ \ &\dfrac{9}{4}k^2-7k+5<0\\ \\ \Longrightarrow\ \ &9k^2-28k+20<0\end{aligned}

\begin{aligned}\Longrightarrow\ \ &9k^2-18k-10k+20<0\\ \\ \Longrightarrow\ \ &9k(k-2)-10(k-2)<0\\ \\ \Longrightarrow\ \ &(k-2)(9k-10)<0\end{aligned}

\textsf{Since LHS $<0$,}\\ \\ \\ \Longrightarrow\ \ \dfrac{10}{9}<k<2\ \implies\ \dfrac{10}{9}<\log_3(x)<2\\ \\ \\ \Longrightarrow\ \ 3^{^{\displaystyle\small\text{$\frac{10}{9}$}}}<3^{^{\displaystyle\small\text{$\log_3(x)$}}}<3^{^{\displaystyle\small\text{2}}}\ \implies\ 3.389<x<9\\ \\ \\ \textsf{Since \ $x\in\mathbb{Z}$, \ we get \ $x\in\{4,\ 5,\ 6,\ 7,\ 8\}$.}\\ \\ \\ \textsf{Hence the answer is}\ \ \textbf{a.\ 5}

Answered by Anonymous
6

Answer:

please refer to the attachment

I hope it would help you

thank you

Attachments:

Anonymous: Awesome answer :)
Similar questions