Math, asked by Anonymous, 19 days ago

 {  \displaystyle\tt  \int_{0}^{1}  \int_{0} ^{ x_{1}}  \int_{ 0 }^{x_{2}}... \int_{ 0 }^{x_{99}}  ln(1 -x_{100} ) dx_{100}... dx_{1}}

Answers

Answered by sajan6491
6

 \small{ \displaystyle\tt \int_{0}^{1} \int_{0} ^{ x_{1}} \int_{ 0 }^{x_{2}}... \int_{ 0 }^{x_{99}} ln(1 -x_{100} ) dx_{100}... dx_{1}}

 \small{ \displaystyle\tt  =  - \int_{0}^{1} \int_{0} ^{ x_{1}} \int_{ 0 }^{x_{2}}... \int_{ 0 }^{x_{98}}  \sum_{n = 1}^{ \infty \frac{}{}   \frac{}{} } \frac{1}{n} \int_{0}^{x_{99}}   {x}^{n}_{100}   \: dx_{100}...dx_{1} }

 \small{ \displaystyle\tt  =  -\sum_{n = 1}^{ \infty \frac{}{}   \frac{}{} } \frac{1}{n}\int_{0}^{1} \int_{0} ^{ x_{1}} \int_{ 0 }^{x_{2}}... \int_{ 0 }^{x_{98}}     \frac{{x}^{n + 1}_{99}}{n + 1}    \: dx_{99}...dx_{1} }

 \displaystyle  =  \tt - \sum_{n = 1}^{ \infty }  \frac{1}{n(n + 1)...(n + 101)}

 \displaystyle  \tt=   -  \frac{1}{(100)!_{}  }  \sum_{n = 1}^{ \infty }  \frac{(n - 1)!(100)!}{(n + 101)!}

 \displaystyle  \tt=   -  \frac{1}{(100)!_{}  }  \sum_{n = 1}^{ \infty} \int_{0}^{1}  {x}^{n  -  1} (1  - x {)}^{100} \:  dx

 \displaystyle = \tt  -  \frac{1}{(100!)}  \int_{0}^{1}  \frac{(1 - x)^{100} }{1 - x} \:  dx

 \displaystyle =  \tt  -  \frac{1}{(100)!}  \int_{0}^{1}  {x}^{99}  \: dx

  \huge=   -  \frac{1}{(100)!100}

Similar questions