Math, asked by sajan6491, 13 days ago

  \displaystyle\tt \int_{0}^{ \infty }  {xe}^{ -  \sqrt{x} } \:   ln(x)  \: dx

Answers

Answered by MysteriesGirl
34

{ \huge{ \boxed{ \bf{\underline{ \red{Answer}}}}}} : -

_____________

Hope it's Helpful :)

Attachments:
Answered by pk1806880
1

To solve the given integral, we will use integration by parts with u = ln x and dv = x e^{-\sqrt{x}} dx. Then, du/dx = 1/x and v = -2 e^{-\sqrt{x}} (\sqrt{x} + 1).

Using the formula for integration by parts, we have:

\begin{align}\int_0^\infty x e^{-\sqrt{x}} \ln x \, dx &= \left[-2xe^{-\sqrt{x}} (\sqrt{x} + 1) \ln x \right]_0^\infty + \int_0^\infty 2e^{-\sqrt{x}} (\sqrt{x} + 1) \, dx \\&= \int_0^\infty 2e^{-\sqrt{x}} \sqrt{x} \, dx + \int_0^\infty 2e^{-\sqrt{x}} \, dx \\\end{align}

We can evaluate the first integral using the substitution u = √x, which gives:

\begin{align}\int_0^\infty 2e^{-\sqrt{x}} \sqrt{x} \, dx &= 4 \int_0^\infty e^{-u} u^2 \, du \\&= 4 \Gamma(3) \\&= 8 \\\end{align}

where Γ is the gamma function.

The second integral can be evaluated directly as:

\begin{align}\int_0^\infty 2e^{-\sqrt{x}} \, dx &=\left[-4e^{-\sqrt{x}} \right]_0^\infty \\&= 4 \\ \end{align}

Therefore, the value of the integral is:

\begin{align}\int_0^\infty x e^{-\sqrt{x}} \ln x \, dx &= \int_0^\infty 2e^{-\sqrt{x}} \sqrt{x} \, dx + \int_0^\infty 2e^{-\sqrt{x}} \, dx \\&= 8 + 4 \\&= 12 \\\end{align}

Thus, the value of the given integral is 12.

Similar questions