Math, asked by Anonymous, 19 days ago

  \displaystyle\tt  \red{\int_{0}^{1}  \frac{ {x}^{2}  - 1}{( {x}^{4}  +  {x}^{3} +  {x}^{2}   +  {x}^{}  + 1)  \ln(x) }  \: dx}

Answers

Answered by sajan6491
16

\displaystyle\tt \red{\int_{0}^{1} \frac{ {x}^{2} - 1}{( {x}^{4} + {x}^{3} + {x}^{2} + {x}^{} + 1) \ln(x) } \: dx}

\displaystyle\tt \red{\int_{0}^{1} \frac{ {x}^{2} - 1}{  \left[   \bigg(\frac{{x}^{5}  - 1}{x - 1} \bigg) \right]  \ln(x) } \: dx}

\displaystyle\tt \red{\int_{0}^{1} \frac{ -  {x}^{3}  +  {x}^{2}  + x - 1}{(1  -   {x}^{5}) \ln(x)}\: dx }

\displaystyle\tt \red{\int_{0}^{1}  \frac{ { - x}^{ \frac{  - 1}{5} }  +  {x}^{ \frac{ - 2}{5} }  +  {x}^{ \frac{ - 3}{5} }  -   {x}^{ \frac{ - 4}{5} } }{1 - x}  \:  \frac{1}{  \ln(x) }  \: dx }

\displaystyle\tt \red{{\int_{0}^{ \infty }\int_{0}^{1} \frac{ {x}^{t -  \frac{1}{5} } -  {x}^{t -  \frac{2}{5}  }  -  {x}^{t -  \frac{3}{5} }   +  {x}^{t -  \frac{4}{5} } }{1 - x}  } \: dx \: dt}

\displaystyle \tt \red{\int_{0}^{ \infty } \bigg(  - \int_{0}^{1} \frac{1 -  {x}^{t -  \frac{1}{5} } }{1 - x} dx + \int_{0}^{1}\frac{1 -  {x}^{t -  \frac{2}{5} } }{1 - x}dx +\int_{0}^{1}\frac{1 -  {x}^{t -  \frac{3}{5} } }{1 - x}dx - \int_{0}^{1}\frac{1 -  {x}^{t -  \frac{4}{5} } }{1 - x}dx \bigg)dt}

 \displaystyle \tt \red {\int_{0}^{ \infty }  \bigg[ - \Psi \bigg( t +  \frac{4}{5}  \bigg) +  \Psi \bigg(t +  \frac{3}{5}  \bigg) +   \Psi \bigg(t +  \frac{2}{5}  \bigg) -   \Psi \bigg(t +  \frac{1}{5}  \bigg)\bigg] \: dt}

 \tt \red{ \ln \bigg( \dfrac{ \Gamma(t +  \frac{3}{5} ) \Gamma(t +  \frac{2}{5} )}{ \Gamma(t +  \frac{4}{5}) \Gamma(t +  \frac{1}{5} ) }  \bigg)  \bigg |^{t \to \infty }_{t = 0}  }

 \tt \red{ \ln(1) -   \ln \bigg( \dfrac{ \Gamma( \frac{3}{5} ) \Gamma(\frac{2}{5} )}{ \Gamma(\frac{4}{5}) \Gamma(  \frac{1}{5} ) }   \bigg)  }

\tt \red{   \ln \bigg( \dfrac{ \frac{\pi}{ \sin } ( \frac{\pi}{5} )}{ \frac{\pi}{ \sin} ( \frac{2\pi}{5} )}   \bigg) }

 \tt \red{ \ln(2 \cos( \frac{\pi}{5} ) )  }

  \red{ \ln( \phi) }

Similar questions