Math, asked by Anonymous, 19 days ago

 \displaystyle \tt \red{ \int^{}_{} \tan \bigg( \sin ^{ - 1} ( {e}^{x} )  \bigg)  \: dx}

Answers

Answered by IamIronMan0
27

Answer:

 \huge \green{  \sin^{ - 1}( {e}^{x}  )  + c}

Step-by-step explanation:

 \red{convert \: sin {}^{ - 1} \: to  \: \: tan {}^{ - 1} \:  \:  using } \\  \red{\:  \: trignomatric \: formulas \: }

 \int^{}_{} \tan \bigg( \sin ^{ - 1} ( {e}^{x} ) \bigg) \: dx \\  \\  =   \int^{}_{} \tan \bigg( \tan ^{ - 1} ( {{e}^{x} \over{ \sqrt{1 -  {e}^{2x}} }}  ) \bigg) \: dx \\  \\   =  \int \:  \frac{ {e}^{x} }{ \sqrt{1 -  {e}^{2x} } }  \: dx \\  \\ put \: \  {e}^{x}  = y \implies \:  {e}^{x}  \: dx = dy \\  \\  =  \int \:  \frac{dy}{ \sqrt{1 -  {y}^{2} } }  \\  \\  =  \sin {}^{ - 1} (y)  + c \\  \\  =  \sin {}^{ - 1} ( {e}^{x} )  + c

Similar questions