Math, asked by Anonymous, 1 month ago


  \displaystyle\underline{ \bigstar \boxed{ \tt{ \int{\dfrac{ \tan  \: x   \sqrt{sec  \: x} + sec \:x \sqrt{tan \: x}   }{cos \: x}dx} }} \bigstar}

Answers

Answered by mathdude500
15

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm \dfrac{ \tan \: x \sqrt{sec \: x} + sec \:x \sqrt{tan \: x} }{cos \: x}dx

can be rewritten as

\rm \:  =  \: \displaystyle\int\rm \dfrac{ \dfrac{sinx}{cosx \sqrt{cosx} }  + \dfrac{ \sqrt{sinx} }{cosx \sqrt{cosx} }  }{cos \: x}dx \:

\rm \:  =  \: \displaystyle\int\rm \dfrac{sinx +  \sqrt{sinx} }{ {cos}^{2}x \sqrt{cosx} }  \: dx

\rm \:  =  \: \displaystyle\int\rm \dfrac{sinx}{ {cos}^{2}x \sqrt{cosx} }  \: dx + \displaystyle\int\rm  \frac{ \sqrt{sinx} }{ {cos}^{2} x \sqrt{cosx} }

\rm \:  =  \: \displaystyle\int\rm  \frac{sinx}{ {\bigg(cosx \bigg) }^{\dfrac{5}{2} } }  \: dx + \displaystyle\int\rm  \sqrt{tanx} \:  {sec}^{2}x \: dx

Now, we use Method of Substitution, we get

In first integral, We substitute

\red{\rm :\longmapsto\:cosx = y}

\red{\rm :\longmapsto\: - sinx  \: dx= dy}

In second integral, we substitute

\red{\rm :\longmapsto\: tanx  = z}

\red{\rm :\longmapsto\: {sec}^{2}x \: dx = dz \: }

So, above integral can be rewritten as

\rm \:  =  \:  - \displaystyle\int\rm  \frac{dx}{ {\bigg(x\bigg) }^{\dfrac{5}{2} } }  + \displaystyle\int\rm  \sqrt{z} \: dx

\rm \:  =  \:  - \displaystyle\int\rm  {\bigg(x \bigg) }^{ - \dfrac{5}{2} }  \: dx \:  + \displaystyle\int\rm  {\bigg(z \bigg) }^{ \dfrac{1}{2} }  \: dz

\rm \:  =  \:  - \dfrac{ {\bigg(x \bigg) }^{ - \dfrac{5}{2}  + 1} }{ - \dfrac{5}{2}  + 1} + \dfrac{ {\bigg(z\bigg) }^{\dfrac{1}{2}  + 1} }{\dfrac{1}{2}  + 1} + c

\rm \:  =  \:  \dfrac{ {\bigg(x \bigg) }^{ - \dfrac{3}{2}} }{\dfrac{3}{2}} + \dfrac{ {\bigg(z\bigg) }^{\dfrac{3}{2}} }{\dfrac{3}{2}} + c

\rm \:  =  \:   \dfrac{2}{3} {\bigg(x \bigg) }^{ - \dfrac{3}{2}}  + \dfrac{2}{3}  {\bigg(z\bigg) }^{\dfrac{3}{2}} + c

\rm \:  =  \:   \dfrac{2}{3} {\bigg(cosx \bigg) }^{ - \dfrac{3}{2}}  + \dfrac{2}{3}  {\bigg(tanx\bigg) }^{\dfrac{3}{2}} + c

\rm \:  =  \: \dfrac{2}{3cosx \sqrt{cosx} }  + \dfrac{2tanx \sqrt{tanx} }{3}  + c

\rm \:  =  \: \dfrac{2}{3}\bigg(secx \sqrt{secx} + tanx \sqrt{tanx}   \bigg)

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions