Math, asked by nareshdonde123, 3 months ago


engineering \: math

Attachments:

Answers

Answered by mathdude500
2

Given :-

\rm :\longmapsto\:u \:  =  \:  log_{e}\bigg|\dfrac{ {x}^{4} +  {y}^{4}  }{x + y}  \bigg|

To Prove :-

\rm :\longmapsto\:x\dfrac{\partial u}{\partial x} + y\dfrac{\partial u}{\partial y}   = 3

Basic Concept Used :-

Eulers theorem :-

This theorem states that if u is a homogeneous function of x and y of degree n, then

\rm :\longmapsto\:x\dfrac{\partial u}{\partial x} + y\dfrac{\partial u}{\partial y}   = nu

Solution :-

Given that

\rm :\longmapsto\:u \:  =  \:  log_{e}\bigg|\dfrac{ {x}^{4} +  {y}^{4}  }{x + y}  \bigg|

We know that

 \green{\bf :\longmapsto\: log_{a}(b) = c \implies \: b =  {a}^{c}}

Thus,

\rm :\longmapsto\: {e}^{u} \:  =  \:  \dfrac{ {x}^{4} +  {y}^{4}  }{x + y}

\rm :\longmapsto\: {e}^{u} \:  =  \:  \dfrac{\bigg(1 + \dfrac{ {y}^{4} }{{x}^{4}}\bigg) {x}^{4}}{x\bigg(1 + \dfrac{y}{x}\bigg) }

\rm :\longmapsto\: {e}^{u} \:  =  \:  \dfrac{\bigg(1 + \dfrac{ {y}^{4} }{{x}^{4}}\bigg) {x}^{3}}{\bigg(1 + \dfrac{y}{x}\bigg) }

\rm :\longmapsto\: {e}^{u} \:  = {x}^{3}f\bigg(\dfrac{y}{x} \bigg)

\bf\implies \: {e}^{u}  \: is \: a \: homogeneous \: funtion \: of \: degree \: 3

Therefore, By Euler's Theorem,

\rm :\longmapsto\:x\dfrac{\partial}{\partial x} {e}^{u}  + y\dfrac{\partial}{\partial y} {e}^{u}    = 3{e}^{u}

\rm :\longmapsto\:x{e}^{u}\dfrac{\partial \: u}{\partial x}   + y{e}^{u}\dfrac{\partial \: u}{\partial y}= 3 {e}^{u}

\bf\implies \:\:x\dfrac{\partial u}{\partial x} + y\dfrac{\partial u}{\partial y}   = 3

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

if u is a homogeneous function of x and y of degree n, then

\boxed{ \sf \:x\dfrac{ {\partial }^{2} u}{ {\partial x}^{2} }  + y\dfrac{ {\partial }^{2} u}{\partial x\partial y} = (n - 1)\dfrac{\partial u}{\partial x}}

\boxed{ \sf \:y\dfrac{ {\partial }^{2} u}{ {\partial y}^{2} }  + x\dfrac{ {\partial }^{2} u}{\partial x\partial y} = (n - 1)\dfrac{\partial u}{\partial y}}

\boxed{ \sf \: {x}^{2} \dfrac{ {\partial }^{2} u}{ {\partial x}^{2} }  + 2xy\dfrac{ {\partial }^{2} u}{\partial x\partial y}  +  {y}^{2}\dfrac{ {\partial }^{2}u }{ {\partial y}^{2} }  = n(n - 1)u}

Similar questions