Math, asked by ammumudhiraj548, 3 months ago


 expand p2q2  \r4

Answers

Answered by dekam8409
1

Answer:

The value of ㏒(\dfrac{p^{2}q^{3}}{r^{4} }r4p2q3 ) is "2 ㏒p +  3㏒q - 4㏒r".

Step-by-step explanation:

We have,

㏒(\dfrac{p^{2}q^{3}}{r^{4} }r4p2q3 )

= ㏒p^{2} q^{3}p2q3 - ㏒r^{4}r4

[Since, ㏒(\dfrac{a}{b}ba ) = ㏒a - ㏒b]

= ㏒p^{2}p2 + ㏒q^{3}q3 - ㏒r^{4}r4

[Since, ㏒(ab) = ㏒a + ㏒b]

= 2 ㏒p +  3㏒q - 4㏒r

Hence, ㏒(\dfrac{p^{2}q^{3}}{r^{4} }r4p2q3 ) = 2 ㏒p +  3㏒q - 4㏒r.

mark as brainlist ans please

hope it's help you

Similar questions