Math, asked by leenatchandra5896, 1 year ago

 Express \left[\begin{array}{ccc}1&-1&2\\2&1&3\\4&-1&5\end{array}\right] as a sum of a symmetric matrix and a skew-symmetric  matrix.

Answers

Answered by rohitkumargupta
1
HELLO DEAR,


let \bold{A = \left[\begin{array}{ccc}1&-1&2\\2&1&3\\4&-1&5\end{array}\right]}



=> A' = \left[\begin{array}{ccc}1&2&4\\-1&1&-1\\2&3&5\end{array}\right]



therefore, (A + A') = \bold{\left[\begin{array}{ccc}1&-1&2\\2&1&3\\4&-1&5\end{array}\right]} + \left[\begin{array}{ccc}1&2&4\\-1&1&-1\\2&3&5\end{array}\right]

= {\left[\begin{array}{ccc}(1 + 1)&(-1 + 2)&(2 + 4)\\(2 - 1)&(1 + 1)&(3 - 1)\\(4 + 2)&(3 - 1)&(5 + 5)\end{array}\right]}

= \left[\begin{array}{ccc}2&1&6\\1&2&2\\6&2&10\end{array}\right]



let p = 1/2(A + A') = \left[\begin{array}{ccc}1&(1/2)&3\\(1/2)&1&1\\3&1&5\end{array}\right]


AND,

(A - A') = \bold{\left[\begin{array}{ccc}1&-1&2\\2&1&3\\4&-1&5\end{array}\right]} - \left[\begin{array}{ccc}1&2&4\\-1&1&-1\\2&3&5\end{array}\right]


= \left[\begin{array}{ccc}(1 - 1)&(-1 - 2)&(2 - 2)\\(2 + 1)&(1 - 1)&(3 + 1)\\(4 - 2)&(-1 - 3)&(5 - 5)\end{array}\right]

let Q = 1/2(A - A') = 1/2.\left[\begin{array}{ccc}0&-3&-1\\3&0&4\\2&-4&0\end{array}\right] = \left[\begin{array}{ccc}0&(-3/2)&(-1/2)\\(3/2)&0&2\\1&-2&0\end{array}\right]



NOW,

p' = \left[\begin{array}{ccc}1&(1/2)&3\\(1/2)&1&1\\3&1&5\end{array}\right]' = \left[\begin{array}{ccc}1&(1/2)&3\\(1/2)&1&1\\3&1&5\end{array}\right] = p

therefore, p is symmetric.


AND Q' = \left[\begin{array}{ccc}0&(-3/2)&(-1/2)\\(3/2)&0&2\\1&-2&0\end{array}\right]' = \left[\begin{array}{ccc}0&(-3/2)&(-1/2)\\(3/2)&0&2\\1&-2&0\end{array}\right] = -Q.

therefore, Q is skew-symmetric.


NOW, (P + Q) =( \left[\begin{array}{ccc}1&(1/2)&3\\(1/2)&1&1\\3&1&5\end{array}\right] + \left[\begin{array}{ccc}0&(-3/2)&(-1/2)\\(3/2)&0&2\\1&-2&0\end{array}\right])

=  \left[\begin{array}{ccc}1&-1&2\\2&1&3\\4&-1&5\end{array}\right] = A.

hence, A = P + Q.

where, p is symmetric and Q is skew-symmetric.


I HOPE ITS HELP YOU DEAR,
THANKS

abhi178: :)
rohitkumargupta: thanks brother:-)
rohitkumargupta: second keyboard??
rohitkumargupta: i did this by coding
hukam0685: bro,both of our answer do not match,please check ones ,please don't mind
Answered by hukam0685
1
Hello,

Solution:

 \left[\begin{array}{ccc}1&-1&2\\2&1&3\\4&-1&5\end{array}\right]

To express given matrix in sum of symmetric and skew symmetric matrix

First write the sum of matrix and it's transpose
[ A+ A']=
 \left [\begin{array}{ccc}1&amp;-1&amp;2\\2&amp;1&amp;3\\4&amp;-1&amp;5\end{array}\right] \: + \left [\begin{array}{ccc}1&amp;2&amp;4\\-1&amp;1&amp;-1\\2&amp;3&amp;5\end{array}\right]\\ \\ A + A' = \left[\begin{array}{ccc}2&amp;1&amp;6\\1&amp;2&amp;2\\6&amp;2&amp;10\end{array}\right]\\\\ let P = 1/2 [ A +A']\\ \\ = \left[\begin{array}{ccc}1&amp;1/2 &amp;3\\1/2&amp;1&amp; 1\\3&amp;1&amp;5\end{array}\right]\\ \\ A - A' = \left[\begin{array}{ccc}0&amp;-3&amp;-2\\3&amp;0&amp;4\\2&amp;-4&amp;0\end{array}\right]\\ \\ Let Q = 1/2 [A - A']\\\ \\ =\left[\begin{array}{ccc}0&amp;-3/2&amp;-1\\3/2&amp;0&amp;2\\1&amp;-2&amp;0\end{array}\right]<br />\\ \\ A \:\: in\:\: the\:\: form\:\: \\ \\of \:\:sum \:\:of \:\:symmetric \:\:and \:skew symmetric\:\: matrix\\ \\ P+Q= \left[\begin{array}{ccc}1&amp;1/2 &amp;3\\1/2&amp;1&amp; 1\\3&amp;1&amp;5\end{array}\right]+ \left[\begin{array}{ccc}0&amp;-3/2&amp;-1\\3/2&amp;0&amp;2\\1&amp;-2&amp;0\end{array}\right]\\ \\
here P is symmetric matrix and Q is skew -symmetric matrix.

hope it helps you.

hukam0685: i will try
hukam0685: there is any technical problems,otherwise code is correct
hukam0685: ok
hukam0685: thanks
Similar questions