Math, asked by HelpMeStarsAndMods, 3 months ago

 f(x)=\begin{cases} 3-\left[\cot^{-1}\dfrac{2x^3-3}{x^2}\right] & x>0\\\\ \{x^2\} \cos e^{\frac{1}{x}} & x<0\end{cases}

What is the value of f(0), if f(x) is continuous at x=0?
( [...] is G.I.F. and {...} is Functional Part Function)

NO SPAMMING. ONLY CORRECT ANSWERS AND WITH FULL EXPLANATION.

BRAINLY STARS, MODS, TEACHERS, MATHS ARYABHATTAS, PLS HELP!!!!​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

f(x)=\begin{cases} 3-\left[\cot^{-1}\dfrac{2x^3-3}{x^2}\right] & x>0\\\\ \{x^2\} \cos e^{\frac{1}{x}} & x<0\end{cases}

It is further given that f(x) is continuous at x = 0.

We know,

A function f(x) is said to continuous at x = a iff

\boxed{ \rm{ \displaystyle\lim_{x \to a^-} \: f(x) = \displaystyle\lim_{x \to a^+} \: f(x) =  \: f(a)}}

So, here it is given that, f(x) is continuous at x = 0

\bf\implies \:{ \rm{ \displaystyle\lim_{x \to 0^-} \: f(x) = \displaystyle\lim_{x \to 0^+} \: f(x) =  \: f(0)}}

So,

Let evaluate LHL

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to 0^-} \: f(x)}

\rm \:  =  \:  \: \displaystyle\lim_{x \to 0^-} \: \{x^2\} \cos e^{\frac{1}{x}}

\red{\rm :\longmapsto\:Put  \: x = 0 - h,  \: as \:  x \to 0 \:  so \:  h \to 0}

So, above expression can be rewritten as

\rm \:  =  \:  \: \displaystyle\lim_{h \to 0}\{(0 - h)^2\} \cos e^{\frac{1}{(0 - h)}}

\rm \:  =  \:  \: \displaystyle\lim_{h \to 0}\{(- h)^2\} \cos e^{\frac{1}{(- h)}}

\rm \:  =  \:  \: \displaystyle\lim_{h \to 0}\{h^2\} \cos e^{\frac{1}{(- h)}}

\rm \:  =  \:  \: 0 \times cos {e}^{ -  \infty }

\rm \:  =  \:  \: 0 \times cos0

\rm \:  =  \:  \: 0  \times 1

\rm \:  =  \:  \: 0

\bf\implies \:\displaystyle\lim_{x \to 0^-} \: \{x^2\} \cos e^{\frac{1}{x}} \:  =  \: 0

Since,

\red{\rm :\longmapsto\:f(0) = \displaystyle\lim_{x \to 0^-} \: f(x)}

\red{\rm :\longmapsto\:f(0) = \displaystyle\lim_{x \to 0^-} \: \{x^2\} \cos e^{\frac{1}{x}}}

\red{\rm :\longmapsto\:f(0) = 0}

Additional Information :-

\boxed{ \rm{ \displaystyle\lim_{x \to 0} \:  \frac{sinx}{x}  = 1}}

\boxed{ \rm{ \displaystyle\lim_{x \to 0} \:  \frac{tanx}{x}  = 1}}

\boxed{ \rm{ \displaystyle\lim_{x \to 0} \:  \frac{tan {}^{ - 1} x}{x}  = 1}}

\boxed{ \rm{ \displaystyle\lim_{x \to 0} \:  \frac{sin {}^{ - 1} x}{x}  = 1}}

\boxed{ \rm{ \displaystyle\lim_{x \to 0} \:  \frac{log(1 + x)}{x}  = 1}}

\boxed{ \rm{ \displaystyle\lim_{x \to 0} \:  \frac{ {e}^{x}  - 1}{x}  = 1}}

\boxed{ \rm{ \displaystyle\lim_{x \to 0} \:  \frac{ {a}^{x}  - 1}{x}  = loga}}

Similar questions