Math, asked by ganesh768415, 1 year ago


f(x) =   \frac{x ^{2}  + 1}{x { }^{2}  - 1} then find f( \frac{1}{2} )

Answers

Answered by Sharad001
79

Question :-

 \sf{f(x) =  \frac{ {x}^{2}  + 1}{ {x}^{2}  - 1}  \:  \: then \: find \: f( \frac{1}{2} )} \\

Answer :-

\implies \boxed{ f( \frac{1}{2} ) =  - 15} \:

Explanation :-

Nothing to solve more in this question simply replaced x by 1/2

We have ,

 \implies \sf{ f(x) =  \frac{ {x}^{2} + 1 }{ {x}^{2} - 1 } } \\ \therefore \\  \\  \implies \sf{ f( \frac{1}{2})  =  \frac{ {( \frac{1}{2} }^{2} ) + 1}{ {( \frac{1}{2})  }^{2}  - 1} } \\  \\  \implies \: f( \frac{1}{2} ) =  \frac{ \frac{1}{4}  + 1}{ \frac{1}{4}  - 1}  \\  \\  \implies \: f( \frac{1}{2} ) =  \frac{ \frac{5}{4} }{ \frac{ - 3}{4} }  \\  \\  \implies \boxed{ f( \frac{1}{2} ) =  - 15}

\_________________/

Similar questions