Math, asked by PranavMhasaye1285, 5 months ago


 f(x)=  {x}^{2}  +  \frac{16}{ {x}^{2} }  \: for \: maxima \: and \: minima

Answers

Answered by Anonymous
12

Step-by-step explanation:

 \blue{ \bf{ \underline {QUESTION : -  }}}

 \sf{ f(x)= {x}^{2} + \frac{16}{ {x}^{2} } \: for \: maxima \: and \: minima}

_________________________

 \boxed{ \huge{ \bold{Given}}}

 \bold{ \it{f(x)= {x}^{2} + \frac{16}{ {x}^{2} }}}

  \huge\boxed{ \bold{to \: find}}

  • f(x) minimum value

 \star{ \pink{ \underline{ \underline{Solution :  - }}}}

 \large{ \sf{f(x) =  {x}^{2}  +  \frac{16}{ {x}^{2} }}}

\large{ \sf{f'(x) = 2x -  \frac{32}{ {x}^{3} }}}

 \large{ \sf{ \implies{f'(x) = 0 = 2x -  \frac{32}{ {x}^{3} }}}}

 \large{ \sf{ {x}^{4}  = 32 =  {2}^{4}  = 16=>x ±2}}

\large{ \sf{f(x) =  {2}^{2}  +  \frac{16}{ {2}^{2} }  = 4+ 4 = 8}}

 \large{ \sf{f''(x) = 2 -  \frac{96}{ {x}^{4} }  > 0}}

 \therefore{ \green{ \bf{f(x) \: will \: have \: minium}}}

 \boxed{ \red{ \mathfrak{so \: {the \: minium \: value \: of \: f(x) = { \boxed{ \purple{8}}}}}}}

_________________________

Similar questions