Math, asked by jiyanaik1512, 1 year ago


f(x) =  {x }^{2} - x - 2. \: find \:  \alpha {}^{2}   +  { \beta }^{2} \:  \:  \:  \:  \:  { \alpha }^{3}  +  { \beta }^{3} \:  \:  \:  \:  \:  \alpha  \div  \beta  +  \beta  \div  \alpha

Answers

Answered by Anonymous
6

Answer :-

➡️ Given Quadratic Equation :-

▪️\sf{ x^2 - x - 2}

And roots of equation :-

▪️\sf{\alpha \: and \: \beta}

Now

▪️Sum of roots =  \sf{\dfrac{-b}{a} = 1 = (\alpha + \beta)}

▪️Product of roots =  \sf{\dfrac{c}{a} = -2 = (\alpha \times \beta) }

Now

 \sf{\alpha^2 + \beta^2 }

 \sf{= (\alpha + \beta)^2 - 2\alpha\beta }

 \sf{= (1)^2 - 2(-2) }

 \sf{= 1 + 4 }

 \sf{ = 5}

 \sf{\alpha^3 + \beta^3}

 \sf{= (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) }

 \sf{= (1)^3 - 3(-2)(1) }

 \sf{= 1 + 6 }

 \sf{ = 7}


Anonymous: Thanks for brainliest ^_^
Similar questions