Math, asked by Sraddha5677, 4 months ago

  \: Factorize :  \:  8 {a}^{3}  + 27

Answers

Answered by Anonymous
20

 \bf \: Factorize :  \:  8 {a}^{3}  + 27

 :  \implies  \sf \:    {(2a)}^{3}  +  {(3)}^{3}

 :  \implies  \sf \: (2a + 3) \bigg( {(2a)}^{2}  - (2a)(3) +  {(3)}^{2}  \bigg)

 \boxed{ \pink{  \because \: \bf \:  {x}^{3}  +  {y}^{3}  = (x + y)( {x}^{2}  - xy +  {y}^{2} )}}

 :  \implies  \bf \: (2a + 3)( {4a}^{2}  - 6a + 9)

More Information:-

  •  \purple{ \sf \:(a + b)^{2} = {a}^{2} + {b}^{2} + 2ab }
  •  \purple{ \sf \:(a - b)^{2} = {a}^{2} + {b}^{2} - 2ab }
  •  \purple{ \sf \:(a + b)(a - b) = {a}^{2} - {b}^{2} }
  •  \purple{ \sf \: (a + b + c)^{2} = {a}^{2} + {b}^{2} + {c}^{2}  + 2ab + 2bc + 2ca}
  •  \purple{ \sf \: (a + b) ^{3} = {a}^{3} + b^{3} + 3ab(a + b)}
  •  \purple{ \sf \: (a  -  b) ^{3} = {a}^{3}  -  b^{3}  -  3ab(a  -  b)}
  •  \purple{ \sf \: a ^{3} + {b}^{3} = (a + b)(a ^{2} + {b}^{2} - ab)}
  •  \purple{ \sf \: a ^{3} - {b}^{3} = (a - b)(a ^{2} + {b}^{2} + ab)}

_____________________________________________

Answered by rahulgurung9
3

Step-by-step explanation:

js zis U siabiavwusgstejwuvduevhsd

Similar questions