Math, asked by BrainlyBeyonder, 1 month ago

\fbox\red{QUESTION :-  }

A cylindrical container has a radius of 17.5 cm and height is 18 cm. The container is filled upto 80% of its capacity with water. If water inside the container can be emptied with 30 cuboid shaped vessels whose length and breadth is 3 cm & 7 cm respectively. Find height of each cuboidal vessel.



Answer only :-

⇒Moderator
⇒BrainlyStar
⇒Best User

\fbox\red{WARNING :-  }
No copy No spamming ​

Answers

Answered by Anonymous
9

Answer:

Given :

Radius of cylindrical container is 17.5 cm.

Height of cylindrical container is 18 cm.

Container is filled upto 80% of its total capacity.

Length and breadth of cuboidal vessel are 3 cm and 7 cm.

To find :

Height of cuboidal vessel.

Solution :

We know,

• Volume of cylinder = πr²h

[Where r is radius and h is height]

Put all values :

⟶ Volume = 22/7 × (17.5)² × 18

⟶ Volume = 22/7 × 5512.5

⟶ Volume = 121275/7

⟶ Volume = 17325

Volume of cylindrical container is 17325 cm³. Means it's capacity is 17325 cm³.

It is filled upto 80% of its capacity.

So,

⟶ 80% of 17325

⟶ 80/100 × 17225

⟶ 13860

80% of its capacity is 13860 cm³ means it is filled till 13860 cm³.

If water inside the container can be emptied with 30 cuboid shaped vessels. Means 30 cuboidal vessels can be filled with 13860 cm³ of water. So,

We also know that,

• Volume of cuboid = lbh

[Where, l, b and h are length, breadth and height respectively]

⟶ Volume of cuboidal vessel = 3 × 7 × h

⟶ Volume = 21 h

And,

⟶ Volume of 30 cuboidal vessels = 21h × 30

⟶ Volume = 630h

Now,

⟶ Volume of 30 cuboidal vessels = 13860

⟶ 630h = 13860

⟶ h = 13860/630

⟶ h = 22

Thus,

Height of each cuboidal vessel is 22 cm.

Step-by-step explanation:

 \:

  • Hope it helps you mate:)
  • #,Be brainly

Thanku

Answered by naiteekpuri98750
2

I also like physics too much

Answer:

Height of each cuboidal vessel is 22 cm.

Step-by-step explanation:

Given :

Radius of cylindrical container is 17.5 cm.

Height of cylindrical container is 18 cm.

Container is filled upto 80% of its total capacity.

Length and breadth of cuboidal vessel are 3 cm and 7 cm.

To find :

Height of cuboidal vessel.

Solution :

We know,

• Volume of cylinder = πr²h

[Where r is radius and h is height]

Put all values :

Volume = 22/7 × (17.5)² × 18

Volume = 22/7 × 5512.5

Volume = 121275/7

Volume = 17325

Volume of cylindrical container is 17325 cm³. Means it's capacity is 17325 cm³.

It is filled upto 80% of its capacity.

So,

80% of 17325

80/100 × 17325

13860

80% of its capacity is 13860 cm³ means it is filled till 13860 cm³.

If water inside the container can be emptied with 30 cuboid shaped vessels. Means 30 cuboidal vessels can be filled with 13860 cm³ of water. So,

We also know that,

• Volume of cuboid = lbh

[Where, l, b and h are length, breadth and height respectively]

Volume of cuboidal vessel = 3 × 7 × h

Volume = 21 h

And,

Volume of 30 cuboidal vessels = 21h × 30

Volume = 630h

Now,

Volume of 30 cuboidal vessels = 13860

630h = 13860

h = 13860/630

h = 22

Thus,

Height of each cuboidal vessel is 22 cm.

Similar questions