English, asked by XxDREAMKINGxX, 1 month ago


\fcolorbox{red}{orange}{PLEASE SOLVE THIS QUESTION}

Attachments:

Answers

Answered by tpalak105
11

Explanation:

1. 15a² + 4b² + ( 15a² - 4b² ) / 15a² + 4b² - ( 15a² - 4b² ) = 47 + 7 / 47 - 7 [ By componendo dividends]

15a² + 4b² + 15a² - 4b² / 15a² + 4b² - 15a² + 4b² = 54 / 40

30a² / 8b² = 54 / 40

/ = 54 × 8 / 40 × 30

/ = 9 / 25

/ = 3/5 [ Take positive square root of both sides ]

/ = 3:5

To find ,

- 2a³ / + 2a³

a/ b = 3/5

[ a/b ] ³ = [ 3/5 ] ³

a/ b = 27 / 125 [ by cubing both ]

so ,

( a/b)³ = 27 / 125

b³ / = 125 / 27 [ BY INVERTENDO ]

/ × 1/2 = 125 / 27 × 1/2 ( multiplying both sides by 1/2 )

/ 2a³ = 125 / 54

+ 2a³ / -2a³ = 125 + 54 / 125 - 54

+ 2a³ / b³ - 2a³ = 179 / 71

- 2a³ / + 2a³ = 71 / 179 [ by invertendo ]

- 2a² / + 2a³ = 71 : 179

hõpê ít hélps yôú

Answered by Yugant1913
12

Explanation:

Given that

  • 15a²+4b²/15a² - 4b² = 47/7

To Find

  • find value of the ratio b³-2a³/b³+2a³

Solution

 \tt \:  \dfrac{15 {}^{2}  + 4b {}^{2} }{ {15a}^{2}  -  {4b}^{2} }  =  \dfrac{47}{7}  \qquad \qquad \:  \green{given}

\longrightarrow \sf \:  \frac{ {15a}^{2}  +  {4b}^{2}  + ( {15a}^{2}    {4b}^{2} )}{ {15a}^{2}  -  {4b}^{2}  - ( {15a}^{2} -  {4b}^{2}  )}  =  \frac{47 + 7}{47 - 7}  \\  \\  \\  \qquad \qquad \qquad \qquad \ \red{ \{{ \bf \: by \: componedo - dividendo \}}}

\longrightarrow \sf \:  \:  \frac{ {15a +  {4b}^{2} } +  {15b}^{2}   -  {4b}^{2} }{ {15b}^{2}  +  {4b}^{2} -  {15b}^{2}  {4b}^{2}  }  =  \frac{54}{40}  \\  \\  \\ \longrightarrow \sf \frac{ {15b {}^{2}  +  {15b}^{2} }^{}  +  {4b}^{2}  -  {4b}^{2}  }{ {15b}^{2}  -  {15b}^{2}  +  {4b}^{2}  +  {4b}^{2} }  =  \frac{54}{40}  \\  \\  \\ \longrightarrow \sf \frac{ {30a}^{2} }{ {8b}^{2} }  =  \frac{54}{40}  \\  \\  \\ \longrightarrow \sf \frac{ {a}^{2} }{ {b}^{2} }  =  \frac{54 \times 8}{40 \times 30}  \\  \\  \\ \longrightarrow \sf \frac{  {a}^{2} }{ {b}^{2} }  =  \frac{9}{25}  \\  \\  \\ \longrightarrow \sf \frac{a}{b}  =  \frac{ \sqrt{9} }{ \sqrt{25} }  \\  \\ \\ \longrightarrow \sf \frac{a}{b}  =  \frac{ \sqrt{3 \times 3} }{ \sqrt{5 \times 5} }

\qquad \longrightarrow \sf \: \frac{a}{b}  =  \frac{3}{5}  \\  \\  \\  \qquad \qquad \qquad \qquad \red{ \{ \bf \: taking \: positive \: square \: root \: of \: both \: sides \}}

now,

 \bf \: we \: find \: the \: value \: of \: the \:  \frac{ {b}^{3} -  {2a}^{3}  }{ {b}^{3} +  {2a}^{3}  }  \\

 \qquad \qquad \qquad \sf \frac{a}{b}  =  \frac{3}{5}  \\

 \longrightarrow \sf \:  \:  \bigg \lgroup \frac{a}{b}  \bigg  \rgroup ^{3} =    \bigg \lgroup\frac{3}{5}  \bigg \rgroup ^{3}  \\  \qquad \qquad  \red{\{ \bf \: cubing \: both \: sides \}}

 \sf \: so

\longrightarrow \sf  \frac{ {a}^{3} }{ {b}^{3} }  =  \frac{27}{125}  \\  \\  \\ \longrightarrow \sf \frac{ {b}^{3} }{ {a}^{3} }  =  \frac{125}{27}  \qquad \qquad  \red{\{ \bf \: by \: invertendo \}}

\longrightarrow \sf \:  \frac{ {b}^{3} }{ {a}^{ 3} }   \times  \frac{1}{3}  =  \frac{125}{27}  \times  \frac{1}{3}  \\  \\  \\    \red{\bf \{ multipying \: both \: side \: by \:  \frac{1}{3}  \}}

 \longrightarrow \sf \frac{ {b}^{3} }{ {a}^{3} } =  \frac{125}{54}   \\  \\  \\ \longrightarrow \sf \frac{ {b}^{3} }{ {2a}^{3} }  =  \frac{125}{54}  \\  \\

\longrightarrow \sf \frac{ {b}^{3}  +  {2a}^{3} }{ {a}^{3}  -  {2a}^{3} }  =  \frac{125 + 54}{125 - 54}  \\  \\  \red{ \{ \bf \: by \: componendo  - \: dividend \}}

\longrightarrow \sf \frac{ {b}^{3} +  {2a}^{3}  }{ {b}^{3}  -  {2a}^{3} }  =  \frac{179}{71}  \\  \\  \\

\longrightarrow \sf \frac{ {b}^{3}  -  {2a}^{3} }{ {b}^{3}  +  {2a}^{3} }  =  \frac{71}{179}    \qquad \qquad  \red {\{ \bf \: by \: invertendo \}} \\

\qquad \sf \therefore  \qquad \boxed{ \frak {\frac{ {b}^{3} -  {2a}^{3}  }{ {b}^{3} +  {2a}^{3}  }  = 71 : 179 }}\\

\qquad \sf  \:the \: ratio \: value \qquad  { {\frac{ {b}^{3} -  {2a}^{3}  }{ {b}^{3} +  {2a}^{3}  }  \:  \:  \:  be \:  \:  \: 71 : 179 }}\\

Similar questions