Math, asked by nagarsavita69, 2 months ago

find \: all \: the \: zeroes \: of \: polynomial \: {2x}^{4} \: - {11x}^{3} \: + {7x}^{2} \: + 13x - 7 \: if \: its \: zeroes \: are \: 3 + \sqrt{2} ,3 - \sqrt{2}

Answers

Answered by anindyaadhikari13
4

Required Answer:-

Given:

  • 2x⁴ - 11x³ + 7x² + 13x - 7 = 0

To Find:

  • All the zeros if two of its zeros are 3 + √2 and 3 - √2

Solution:

Let f(x) = 2x⁴ - 11x³ + 7x² + 13x - 7

It's given that,

⟹ Two of its zeros are 3 + √2 and 3 - √2

Therefore,

⟹ f(3 + √2) = 0 and f(3 - √2) = 0

So,

⟹ (x - 3 - √2) and (x - 3 + √2) are the factors of the given polynomial. (By Factor Theorem)

So,

(x - 3 - √2)(x - 3 + √2)

= (x - 3)² - (√2)²

= x² - 6x + 9 - 2

= x² - 6x + 7

Therefore, x² - 6x + 7 is a factor of the polynomial.

Let g(x) = x² - 6x + 7

Let's divide f(x) by g(x)

----------------------------------------------------------------------------------------

x² - 6x + 7 ) 2x⁴ - 11x³ +  7x² + 13x - 7 ( 2x² + x - 1

                  2x⁴ - 12x³ + 14x²

               (-)     (+)       (-)

            --------------------------------------------

                            x³ - 7x² + 13x

                            x³ - 6x² + 7x

                         (-)   (+)     (-)

            --------------------------------------------

                                  -x² + 6x - 7

                                  -x² + 6x - 7

                                 (+)  (-)     (+)

            --------------------------------------------

                                         0

----------------------------------------------------------------------------------------

Therefore,

⟹ Quotient = 2x² + x - 1

⟹ Remainder = 0

So,

(2x⁴ - 11x³ + 7x² + 13x - 7)

= (x² - 6x + 7)(2x² + x - 1)

⟹ (x² - 6x + 7)(2x² + x - 1) = 0

⟹ Either (x² - 6x + 7) = 0 or (2x² + x - 1) = 0

It's already given that roots of x² - 6x + 7 = 0 are 3 + √2 and 3 - √2. So, solve for the other part.

⟹ 2x² + x - 1 = 0

⟹ 2x² + 2x - x - 1 = 0

⟹ 2x(x + 1) - 1(x + 1) = 0

⟹ (2x - 1)(x + 1) = 0

⟹ Either (2x - 1) = 0 or (x + 1) = 0

⟹ x = 1/2, -1

Hence, the other two roots are 1/2 and -1.

So,

⟹ 2x⁴ - 11x³ + 7x² + 13x - 7 = 0

⟹ x₁,₂,₃,₄ = 3 + √2, 3 - √2, 1/2, -1

Answer:

  • The roots of the given quartic equation are (3 + √2), (3 - √2), 1/2 and -1.
Similar questions