Math, asked by pravinking988, 2 months ago


find \:  \frac{dy}{dx}  \: if( {x +}^{2}  + 2x + 1) log_{x}

Answers

Answered by VishnuPriya2801
24

Correct Question:-

Find dy/dx if y = (x² + 2x + 1) log x .

Answer:-

We have to evaluate;

 \implies \sf \:  \dfrac{d}{dx} ( {x}^{2}  + 2x + 1)  log x

Using d/dx (uv) = v * du/dx + u * dv/dx we get,

 \implies \sf \: log \: x \times  \dfrac{d}{dx} ( {x}^{2}  + 2x + 1) + ( {x}^{2}  + 2x + 1) \times  \dfrac{d}{dx} ( log \: x)

Using d/dx (log x) = 1/x and d/dx (u ± v) = du/dx ± dv/dx we get,

 \implies \sf \: log \: x \times  \bigg( \dfrac{d}{dx} ( {x}^{2} ) +  \dfrac{d}{dx} (2x) +  \dfrac{d}{dx} (1) \bigg) + ( {x}^{2}  + 2x + 1) \times  \dfrac{1}{x}

Using d/dx (xⁿ) = n * x ¹ & d/dx (constant) = 0 we get,

 \implies \sf \: log \: x(2 \times  {x}^{2 - 1}  + 1 \times 2 \times  {x}^{1 - 1}  + 0) +  \dfrac{ {x}^{2} + 2x + 1 }{x}  \\  \\  \\ \implies \sf \: log \: x(2x + 2) +  \frac{ {x}^{2}  + 2x + 1}{x}  \\  \\  \\ \implies   \sf \frac{log \: x \times x(2x + 2) +  {x}^{2} + 2x + 1 }{x}  \\  \\  \\ \implies \sf \underline{  \underline{ \frac{log \: x(2 {x}^{2}  + 2x) +  {x}^{2}  + 2x + 1}{x} }}


Anonymous: Great! :D
VishnuPriya2801: Thanks ! :)
mddilshad11ab: Perfect¶
VishnuPriya2801: Thank you ! :)
Similar questions