Math, asked by GRANDxSAMARTH, 10 months ago


find \:  \frac{dy}{dx} if \\  {x}^{2}  +  {xy}^{3}  +  {x}^{2} y +  {y}^{4 = 4}

Answers

Answered by rocky200216
9

{\bold{\huge{\underline{\pink{\underline{ANSWER}:-}}}}}

 {x}^{2}  +  x {y}^{3}  +  {x}^{2}y +  {y}^{4}   = 4  \\  =  >  \frac{d( {x}^{2}) }{dx}  +  \frac{d(x {y}^{3}) }{dx}  +  \frac{d( {x}^{2}y) }{dx}  +  \frac{d({y}^{4}) }{dx}  = 4 \\  =  >  please \: see \: the \: attachment \: picture \: for \: details \: explanations. \\ =  >  \frac{dy}{dx}  =   - ( \frac{2x +  {y}^{3} + 2xy }{ {x}^{2} + 4 {y}^{3}  + 3x {y}^{2}  } )

\sf\huge{\green{Hope\: it\: helps\: to\: you}}

Attachments:
Answered by Anonymous
6
ANSWER​:−​

\begin{lgathered}{x}^{2} + x {y}^{3} + {x}^{2}y + {y}^{4} = 4 \\ = > \frac{d( {x}^{2}) }{dx} + \frac{d(x {y}^{3}) }{dx} + \frac{d( {x}^{2}y) }{dx} + \frac{d({y}^{4}) }{dx} = 4 \\ = > please \: see \: the \: attachment \: picture \: for \: details \: explanations. \\ = > \frac{dy}{dx} = - ( \frac{2x + {y}^{3} + 2xy }{ {x}^{2} + 4 {y}^{3} + 3x {y}^{2} } )\end{lgathered}x2+xy3+x2y+y4=4=>dxd(x2)​+dxd(xy3)​+dxd(x2y)​+dxd(y4)​=4=>pleaseseetheattachmentpicturefordetailsexplanations.=>dxdy​=−(x2+4y3+3xy22x+y3+2xy​)​

\sf\huge{\green{Hope\: it\: helps\: to\: you}}Hopeithelpstoyou
Similar questions