Math, asked by idonotknowthis, 2 months ago

find \: general \: solution \: of \: the \: equation \: \sin^2 \alpha { - 2 \cos( \alpha ) } + \frac{1}{4} = 0

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \sin^{2} ( \alpha )  - 2 \cos( \alpha )  +  \frac{1}{4}  = 0 \\

  \implies1 - \cos^{2} ( \alpha )  - 2 \cos( \alpha )  +  \frac{1}{4}  = 0 \\

  \implies4 - 4\cos^{2} ( \alpha )  - 8\cos( \alpha )  +  1  = 0 \\

  \implies5- 4\cos^{2} ( \alpha )  - 8\cos( \alpha )  = 0 \\

  \implies 4\cos^{2} ( \alpha )   + 8\cos( \alpha )   - 5= 0 \\

  \implies 4\cos^{2} ( \alpha )   + 10\cos( \alpha )  - 2 \cos( \alpha )   - 5= 0 \\

  \implies 2\cos ( \alpha ) (2 \cos( \alpha )   + 5)  -1( 2 \cos( \alpha )    +  5)= 0 \\

  \implies (2\cos( \alpha ) - 1) (2 \cos( \alpha )   + 5) = 0 \\

  \implies (2\cos ( \alpha )- 1) = 0 \:  \: or \:  \:  (2 \cos( \alpha )   + 5) = 0 \\

  \implies \cos ( \alpha ) =  \frac{1}{2}  \:  \: or \:  \:  \cos( \alpha )   =  - \frac{5}{2} \\

Since  \cos(\alpha) \in [-1,1]

so,  \cos(\alpha) ≠- \frac{5}{2}\\

so,

 \cos( \alpha ) =  \frac{1}{2}  \\

  \implies \: \cos( \alpha ) =   \cos \bigg( \frac{\pi}{3}  \bigg)   \\

  \implies \: \alpha  =  2n\pi \pm \frac{\pi}{3}     \\

Similar questions