Math, asked by locomaniac, 1 year ago


find \: the \: derivative \: of \: standard \\ function \:  log_{e}(x) \\ by \: ab \: initio.
thank \: you
:)

Answers

Answered by Anonymous
9
Hi,

Here is your answer,

Given, 

           loge(x)

y = log x/log e

y = 1/log e × log x

dy/dx = 1/xloge

So, therefore 1/xloge = 1/x (or) 1

Hope it helps you !


 
Answered by TheAishtonsageAlvie
16

 \underline \frak {Hello  \: there }
let   \: y  = ln_e(x )  \\  \\ then \:  \frac{d}{dx} ( log_{e}(x) ) \\  \\  \Rightarrow \:  \frac{d}{dx} ( log_{e}x) .  \frac{d}{dx} (ex) \\  \\ \Rightarrow \:  \frac{1}{ex} .e. \frac{d}{dx}(x)  \\  \\ \Rightarrow \:   \frac{ {e}^{ - 1}  \times e}{x} \\  \\ \Rightarrow \ \boxed {\bf  \frac{1}{x}  }


Hope this helps you ☺

locomaniac: thanks :))
TheAishtonsageAlvie: :)
TheAishtonsageAlvie: Glad to help :)
Similar questions