Math, asked by Smartest2, 11 months ago

Find\ the\ derivative\ of\ :
\displaystyle \frac{1}{ax^2+bx+c}

Answers

Answered by Sudhir1188
3

Step-by-step explanation:

PLEASE FIND THIS ATTACHMENT

HOPE THIS HELPS U

Attachments:
Answered by CharmingPrince
7

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Question}}}}}{\bigstar}

□☆□☆□☆□☆□☆□☆□☆□☆□☆□

Find\ the\ derivative\ of\ :

\displaystyle \frac{1}{ax^2+bx+c}

□☆□☆□☆□☆□☆□☆□☆□☆□☆□

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Answer}}}}}{\bigstar}

\boxed{\red{\bold{To \ find:}}}

\purple{\implies \displaystyle \frac{d}{dx} \frac{1}{ax^2+bx+c}}

\boxed{\red{\bold{By \ product \ rule:}}}

\red{\implies}\displaystyle \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{\frac{d}{dx} u\; \: . \: v - \frac{d}{dx} v\: \: . \: u}{v^2}

\red{\implies}\displaystyle{\frac{d}{dx}} \frac{1}{ax^2+bx+c} = \\ \frac{\frac{d}{dx} 1 \: \: . \: (ax^2 +bx+c) - \frac{d}{dx}(ax^2+bx+c) \: \; . \: 1}{{(ax^2+bx+c)}^2}

\red{\implies}\displaystyle \frac{0.(ax^2+bx+c) - (2ax+b). 1}{{(ax^2+bx+c)}^2}

\blue{\left( \because \displaystyle \frac{d}{dx} c = 0 \: and \: \frac{d}{dx} ax^n = nax^{n-1} \right)}

\green{\boxed{\implies{\boxed{\displaystyle \frac{-(2ax+b)}{{(ax^2+bx+c)}^2}}}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Similar questions