CBSE BOARD X, asked by OoAryanKingoO79, 10 hours ago

find \: the \: inverse

Attachments:

Answers

Answered by OoAryanKingoO78
27

Answer:

\boxed{ \begin{array}{cc} \bf \:  \to \: given: \\   \\ A=\left[ \begin{array} {ccc}1&3&2\\ 6& - 8&5 \\ 9&7& - 4\end{array}\right] \\   \\ \\  \pink{ \sf \:  we \: have \: to \: find : } \\  \\   \:  \sf \:  inverse  \: of \: the \:   \: matrix \:  = ( {A}^{ - 1})  \\   \\ \red{ \underline{ \bf \: Solution}} \\  \\ \sf \: we \: know \: that :   \\  \\  \sf \: Inverse  \: of \:  a \:  matrix  \: exists \\  \sf \: if  \: the  \: matrix \:  is \:  non \: singular. \\  \sf \: that \: is \: mean \: its \: diterminant\:\:|A|\: \neq \: 0 \\  \\  \bf \: now \\  \\ |A|=\left|\begin{array} {ccc}1&3&2\\ 6& - 8&5  \\ 9& 7& - 4\end{array}\right| \\  \\ =  \small{1 \{( - 8) \times ( - 4) - 7 \times 5 \}  - 3 \{6 \times ( - 4) - 9 \times 5 \} + 2 \{ 6  \times 7 - 9 \times ( - 8)\}}\\  \\     =1(32-35)-3( - 24-45)+2(42 + 72) \\  \\ =1 \times( - 3)  +  3 \times 69 + \times 2 \times 114 \\  \\ = - 3 + 207 + 228\\  \\ =432\\  \\ \therefore \:  |A| \neq \: 0 \\  \\  \bf \: so \: inverse  \: of \: the \:  matrix \:   \: is \: exist \:  \\  \\  \\  \bf \: we \: know \: that \\  \\  \pink{ \boxed{{A}^{ -1 }   =  \frac{1}{ |A| } \times Adj(A)  }}\\  \\   \end{array}}

Now we have to find Adj(A)

→ To find Adjoint of matrix A, we have to find co - factors.

\boxed{ \begin{array}{cc}\bf \: We  \: know \: that, \:  \\  \\  \sf \:  \red{\boxed{ \orange{ \bf \: { c_{ij}  \: =  \:  {( - 1)}^{i \:  +  \: j} \: m_{ij} \: }}}} \\  \\  \sf \: Now, \\  \\ \rm \:c_{11} =  {( - 1)}^{1 + 1}\begin{array}{|cc|}\sf  - 8 &\sf 5\\ \sf 7&\sf  - 4\\\end{array} = ( 32 - 35) =  - 3\\  \\ \rm \:c_{12} =  {( - 1)}^{1 + 2}\begin{array}{|cc|}\sf 6 &\sf 5 \\ \sf 9&\sf  - 4 \\\end{array} =  - ( - 2 4   - 45) =  69\rm  \\  \\ \:c_{13} =  {( - 1)}^{1 + 3}\begin{array}{|cc|}\sf 6 &\sf  - 8  \\ \sf 9 &\sf 7\\\end{array} =  (42 + 72) =114 \\   \end{array}}

\boxed{ \begin{array}{cc}\rm\:c_{21} =  {( - 1)}^{2 + 1}\begin{array}{|cc|}\sf 3 &\sf  2\\ \sf 7&\sf   - 4\\\end{array} = - (  - 12  - 14) = 26 \\  \\ \rm \: c_{22} =  {( - 1)}^{2 + 2}\begin{array}{|cc|}\sf 1&\sf  2  \\ \sf 9&\sf  - 4 \\\end{array} = (  - 4 - 18) =  - 22 \\  \\ \rm \:c_{23} =  {( - 1)}^{2 + 3}\begin{array}{|cc|}\sf 1&\sf 3  \\ \sf 9 &\sf 7\\\end{array} = -  (7 - 27) = 20 \\  \end{array}}

\boxed{ \begin{array}{cc} \rm\:c_{31} =  {( - 1)}^{3 + 1}\begin{array}{|cc|}\sf 3&\sf 2 \\ \sf - 8 &\sf 5 \\\end{array} =(15 + 16  ) = 31 \\  \\ \rm \:c_{32} =  {( - 1)}^{3 + 2}\begin{array}{|cc|}\sf 1 &\sf  2\\ \sf 6 &\sf 5 \\\end{array} = - (5 - 12) = 7 \\  \\ \rm \:c_{33} =  {( - 1)}^{3 + 3}\begin{array}{|cc|}\sf 1&\sf   3  \\ \sf 6 &\sf  - 8\\\end{array} =( - 8 - 18) = - 26 \\  \end{array}}

\boxed{ \begin{array}{cc} \bf \: So,  \rm \:\:adj(A) = \begin{gathered}\sf\left[\begin{array}{ccc} c_{11} & c_{12}&c_{13}\\ c_{21}& c_{22}& c_{23}\\  c_{31}&c_{32}&  c_{33}\end{array}\right]\end{gathered} ' \\  \\  \rm \:  \implies\:adj(A) = \begin{gathered}\sf\left[\begin{array}{ccc} - 3& 69&114\\ 26& - 22 &20 \\  31& 7&  - 26\end{array}\right]\end{gathered} ' \\  \\ \rm \: \implies\:adj(A )= \begin{gathered}\sf\left[\begin{array}{ccc}  - 3& 26& 31 \\  69& - 22& 7\\114& 20&  -2 6\end{array}\right]\end{gathered} \end{array}}

{\boxed{\boxed{\begin{array}{cc}\bf \: now \\  \\   {A}^{ - 1}  =  \frac{1}{ |A| }  \times Adj(A) \\  \\  =  \frac{1}{432}\begin{gathered}\sf\left[\begin{array}{ccc}  - 3& 26& 31 \\  69& - 22& 7\\114& 20&  -2 6\end{array}\right]\end{gathered} \end{array}}}}

Answered by Itzintellectual
2

Explanation:

Anaylatic solution

Writing the transpose of the matrix of cofactors, known as an adjugate matrix, can also be an efficient way to calculate the inverse of small matrices, but this recursive method is inefficient for large matrices. To determine the inverse, we calculate a matrix of cofactors:

{\displaystyle \mathbf {A} ^{-1}={1 \over {\begin{vmatrix}\mathbf {A} \end{vmatrix}}}\mathbf {C} ^{\mathrm {T} }={1 \over {\begin{vmatrix}\mathbf {A} \end{vmatrix}}}{\begin{pmatrix}\mathbf {C} _{11}&\mathbf {C} _{21}&\cdots &\mathbf {C} _{n1}\\\mathbf {C} _{12}&\mathbf {C} _{22}&\cdots &\mathbf {C} _{n2}\\\vdots &\vdots &\ddots &\vdots \\\mathbf {C} _{1n}&\mathbf {C} _{2n}&\cdots &\mathbf {C} _{nn}\\\end{pmatrix}}}{\displaystyle \mathbf {A} ^{-1}={1 \over {\begin{vmatrix}\mathbf {A} \end{vmatrix}}}\mathbf {C} ^{\mathrm {T} }={1 \over {\begin{vmatrix}\mathbf {A} \end{vmatrix}}}{\begin{pmatrix}\mathbf {C} _{11}&\mathbf {C} _{21}&\cdots &\mathbf {C} _{n1}\\\mathbf {C} _{12}&\mathbf {C} _{22}&\cdots &\mathbf {C} _{n2}\\\vdots &\vdots &\ddots &\vdots \\\mathbf {C} _{1n}&\mathbf {C} _{2n}&\cdots &\mathbf {C} _{nn}\\\end{pmatrix}}}

so that

{\displaystyle \left(\mathbf {A} ^{-1}\right)_{ij}={1 \over {\begin{vmatrix}\mathbf {A} \end{vmatrix}}}\left(\mathbf {C} ^{\mathrm {T} }\right)_{ij}={1 \over {\begin{vmatrix}\mathbf {A} \end{vmatrix}}}\left(\mathbf {C} _{ji}\right)}{\displaystyle \left(\mathbf {A} ^{-1}\right)_{ij}={1 \over {\begin{vmatrix}\mathbf {A} \end{vmatrix}}}\left(\mathbf {C} ^{\mathrm {T} }\right)_{ij}={1 \over {\begin{vmatrix}\mathbf {A} \end{vmatrix}}}\left(\mathbf {C} _{ji}\right)}

where |A| is the determinant of A, C is the matrix of cofactors, and CT represents the matrix transpose

Now solution

{\displaystyle A={\begin{bmatrix}2&amp;-5\\-1&amp;3\end{bmatrix}}}</p><p>{\displaystyle A^{-1}={\frac {1}{|A|}}\mathrm {adj} {\begin{pmatrix}{\begin{bmatrix}2&amp;-5\\-1&amp;3\end{bmatrix}}\end{pmatrix}}={\frac {1}{|A|}}\mathrm {cof} {\begin{pmatrix}{\begin{bmatrix}2&amp;-5\\-1&amp;3\end{bmatrix}}\end{pmatrix}}^{\mathrm {T} }}</p><p>{\displaystyle ={\frac {1}{6-5}}{\begin{bmatrix}3&amp;1\\5&amp;2\end{bmatrix}}^{\mathrm {T} }={\begin{bmatrix}3&amp;5\\1&amp;2\end{bmatrix}}}

This is indeed the inverse of A, as

{\displaystyle {\begin{bmatrix}2&amp;-5\\-1&amp;3\end{bmatrix}}{\begin{bmatrix}3&amp;5\\1&amp;2\end{bmatrix}}={\begin{bmatrix}1&amp;0\\0&amp;1\end{bmatrix}}}

Similar questions