Math, asked by bandavenkataramana4, 11 months ago


find \: the \: of \: x -  \frac{3}{x }  = 2

Answers

Answered by Sharad001
7

Question :-

 \sf \: find \: the \: value \: of \: x -  \frac{3}{x}  = 2 \\

Answer :-

 \longmapsto  \boxed{ \: \sf   x = 3 \: or \:  - 1 }\\

Solution :-

We have ,

 \to \sf \: x -  \frac{3}{x}  = 2\\ \\   \bf \: taking \: lcm \:  \\  \to \sf \:   \frac{ {x }^{2}  - 3}{x}  = 2 \\  \\  \to \sf \:   {x}^{2}  - 3 = 2x \\  \\  \to \sf \:  {x}^{2}  - 2x - 3 = 0 \\  \\  \text{solve \: this \: quadratic \: by \: middle \: term } \\ \text{ splitting \: method} \\  \\  \to \sf \:   {x}^{2}  - 3x + x  - 3 = 0 \\  \\  \to \sf \: x(x - 3) + 1(x - 3) = 0 \\  \\  \to \sf \: (x - 3)(x + 1) = 0 \\  \\ \star \sf  \: case \: (1) \: if \:  \\  \to \sf \:  x - 3 = 0 \\  \\  \to \sf \boxed{ \sf \: x = 3} \\  \\  \star \sf \:  case \: (2) \: if \\  \\  \to \sf \:   x + 1 = 0 \\  \\  \to \boxed{ \sf \: x = 1} \\  \\ \sf hence  \:   \: x = 3 \: or \:  - 1

  \underline{ \boxed{\sf verification \: }} :  -  \\  \\  \bf \: let \\  \sf f(x) =  {x}^{2}  - 2x - 3 = 0 \\  \\ \sf \:  when \: x = 3 \\  \\  \to \sf f(3) =  {3}^{2}  - 3 \times 2 - 3 = 0 \\  \\  \to \: 9 - 6 - 3 = 0 \\  \\  \to \: 0 = 0 \\  \\ \sf \:  when \: x =  - 1 \\  \\  \to \sf \: f( - 1) =  {( - 1)}^{2}  - 2 \times ( - 1) - 3 = 0 \\  \\  \to \: 1 + 2 - 3 = 0 \\  \\  \to \: 0 = 0 \\  \\ \large \sf \:  hence \: verified \:

Similar questions