Math, asked by niharika403, 2 months ago


find  \: the  \: remainder  \: when  \\  {x}^{3}  + 3 {x}^{2}  + 3x  + 1 \\  \\ is \: divided \: by

 1)\:  \:  \: x -  \frac{1}{2}

Answers

Answered by ManishShah98
3

find \: the \: remainder \: when \\ {x}^{3} + 3 {x}^{2} + 3x + 1 \\ \\ 1)\: \: \: x - \frac{1}{2} \\  \\ solution. \\  \\ x -  \frac{1}{2}  = 0 \\  \\ x =  \frac{1}{2} \:  \:  (given) \\  \\p(x) =  {x}^{3} + 3 {x}^{2} + 3x + 1 \\  \\ p( \frac{1}{2} ) = ( \frac{1}{2} ) {}^{3}  + 3( \frac{1}{2} ) {}^{2}  + 3( \frac{1}{2} ) + 1 \\  \\  =  \frac{1}{8}  + 3( \frac{1}{4} ) +  \frac{3}{2}  + 1 \\  \\  =  \frac{1}{8}  +  \frac{3}{4}  +  \frac{3}{2}  +  \frac{1}{1}  \\  \\  =  \frac{1 + 6 + 12 + 8}{8}  \\  \\  =  \frac{27}{8}= 3.375   \:  \:  \: is \: the \: answer...

hope it help you ✌✌✌☺

Similar questions