Math, asked by kajalkumari77, 2 months ago


find \: the \: supplement \: of \:  \frac{7}{8} \:  right \: angle

Answers

Answered by Karankiller
0

Answer:

315/2.

Step-by-step explanation:

sbsbsjsbha aba. ajahahajaj

ahajahhaja

bajs

Answered by Yugant1913
11

 \huge   \tt\underline \green{given : - }

 \sf \: First  \: angle = \frac{1}{8}  \: right \: angle \\  \sf \: i.e

 \:  \:  \:  \:  \:  \:  \:  \angle 1 =  \frac{1}{8}   \times 90° \\   \\ \implies \sf \angle1 =  \frac{7}{4}  \times 45° \\  \\  \implies \angle1 =  \frac{315°}{4}

 \sf \: we \: have \: to \: find \: the \: supplement \: of \:  \angle1

 \sf \: let \: \angle2 \: be \: the \: supplement \: of \:  \angle1

 \sf \: A \: per \: the \:  \blue{property \: of \: supplementary \: angles \: the \: sum } \\  \blue{ \sf \: of \: the \: angles \: is \: \ }180°

 \sf \: i.e \:  \angle1 +  \angle2 = 180°

 \:  \:  \:  \:  \:  \sf \: putting \: value \: of \:  \angle1.

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt \:  \frac{315}{4}  +  \angle2 = 180 \\

 \implies \tt \:  \angle2 =1 80 -  \frac{315}{4}  \\

 \implies \tt \:  \angle2 = \frac{180 \times 4 - 315}{4}  \\

 \implies \tt \:  \angle2 =  \frac{720 - 315}{4}  \\

 \implies \tt \:  \angle2 =  \frac{405}{4}  \\

 \implies \tt \:  \angle2 =  \frac{810}{8}  \\

 \implies \tt \:  \angle2 =  \frac{90 \times 9}{8}  \\

 \implies \tt \angle2 =  \frac{9}{8}   \times 90° \\

\tt  \underline\orange{\:So, the\: supplement\: angle\: is\: \angle2= \frac{9}{8} \: right \: angle. }  \\

Similar questions