Math, asked by nayyarsheikh91, 11 months ago


find \: the \: value \: of   \cos( \frac{\pi}{4} + x )  +  \cos( \frac{\pi}{4}   - x)

Attachments:

Answers

Answered by BrainlyConqueror0901
35

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore cos(\frac{\pi}{4}+x)+cos(\frac{\pi}{4}-x)=\sqrt{2}cos\:x}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline \bold{To \: find: } \\  \implies cos (\frac{\pi}{4}  + x) + cos( \frac{\pi}{4}  - x) = ?

• According to given question :

 \bold{Using \: identity : } \\   \bold{\implies cos (a + b) = cos \: a \times  cos \: b - sin \:a \times sin \: b} \\  \\     \bold{\implies cos(a - b) = cos \: a \times  cos \: b  + sin \:a \times sin \: b} \\   \\  \bold{For \: finding \: value : } \\  \implies cos (\frac{\pi}{4} + x)  + cos (\frac{\pi}{4}  - x) \\  \\  \implies cos  \frac{\pi}{4}  \times cos \: x - sin \:  \frac{\pi}{4}  \times sin \: x + cos  \frac{\pi}{4}  \times cos \: x +  sin \:  \frac{\pi}{4}  \times sin \: x  \\  \\  \bold{cos  \frac{\pi}{4}  =  \frac{1}{ \sqrt{2} }   = sin \frac{\pi}{4} }  \\ \\   \implies  \frac{cos \: x}{ \sqrt{2} }  -  \cancel{\frac{sin \: x}{ \sqrt{2}  }} +  \frac{cos \:x}{ \sqrt{2}  } +  \cancel{\frac{sin  \: x}{\sqrt{2} }}  \\  \\  \implies  \frac{2cos \: x}{ \sqrt{2} }  \\  \\  \implies  \frac{2cos \:x \sqrt{2} }{2}  \\  \\   \bold{\implies  \sqrt{2} cos  \: x}

Answered by lAravindReddyl
39

\boxed{\sf \red{ Answer}}

 \mathsf{\sqrt{2} cosx}</p><p>

\boxed{\sf \red{ Explanation}}

To Find:

Value of,

 \mathsf{\pink{cos(\dfrac{\pi}{4}+x) + cos (\dfrac{\pi}{4}-x) }}

Solution:

 \mathsf{ cos(\dfrac{\pi}{4}+x) + cos (\dfrac{\pi}{4}-x) }</p><p>

W.k.t

\boxed{\bold\blue{ cos(A+B) = cosA.cosB - sinA.SinB}}

\boxed{\bold\blue{ cos(A-B) = cosA.cosB + sinA.SinB}}

By using the identities

 \mathsf{\implies  cos(\dfrac{\pi}{4}+x) + cos (\dfrac{\pi}{4}-x) }</p><p>

 \mathsf{\implies  cos\dfrac{\pi}{4} cosx - sin \dfrac{\pi}{4}. sinx + cos\dfrac{\pi}{4} cosx +sin \dfrac{\pi}{4}. sinx }</p><p>

 \mathsf{\implies  cos\dfrac{\pi}{4} cosx - \cancel{sin \dfrac{\pi}{4}. sinx }+ cos\dfrac{\pi}{4} cosx +\cancel{sin \dfrac{\pi}{4}. sinx} }</p><p>

 \mathsf{\implies  cos\dfrac{\pi}{4} cosx + cos\dfrac{\pi}{4} cosx  }</p><p>

 \mathsf{\implies  2(cos\dfrac{\pi}{4} cosx )  }</p><p>

 \mathsf{\implies 2( \dfrac{1}{\sqrt{2}} cosx ) }</p><p>

 \mathsf{\implies{\sqrt{2} \times   \sqrt{2} ( \dfrac{1}{\sqrt{2}} cosx ) }}</p><p>

 \mathsf{\implies{\sqrt{2} \times   \cancel{\sqrt{2}} ( \dfrac{1}{\cancel{\sqrt{2}}} cosx ) }}</p><p>

 \mathsf{\implies \sqrt{2} cosx }</p><p>

#\texttt{\red{ Aravind} \: \blue{Reddy}...!}

Similar questions