Math, asked by TrustedAnswerer19, 2 months ago


 find \: the \: value \: of \\  \\  \:  \: i +  {i}^{2}  +  {i}^{3}  +  {i}^{4}  + .... +  {i}^{202}
Chapter : complex number ​

Answers

Answered by hukam0685
23

Step-by-step explanation:

Given:

i + {i}^{2} + {i}^{3} + {i}^{4} + .... + {i}^{202}

To find:Find the value

Solution:

We know that

 {i}^{2}  =  - 1 \\  \\  {i}^{3}  =  - i \\  \\  {i}^{4}  = 1 \\

Now divide the given terms in pair of four

(i +  {i}^{2}  +  {i}^{3}  +  {i}^{4} ) + ( {i}^{5} +  {i}^{6}  +  {i}^{7} +  {i}^{8}) \\  \\ + ... + ( {i}^{197} +  {i}^{198}  +  {i}^{199}  +  {i}^{200}) +  {i}^{201}  +  {i}^{202}  \\  \\

Place the values

(i - 1 - i + 1) + ( {i}^{4 + 1}  +  {i}^{4 + 2}  +  {i}^{4 + 3}  +  {i}^{4 \times 2} ) + ... + ( {i}^{4 \times 49 + 1}  +  {i}^{4 \times 49 + 2}  +  {i}^{4 \times 49 + 3}  +  {i}^{4 \times 50} )  +  {i}^{4 \times 50 + 1}  +  {i}^{4 \times 50 + 2}  \\  \\

All the four pair will result to zero as the first pair

(i - 1 - i + 1) + (i - 1 - i + 1) +... +  (i - 1 - i + 1)  + i - 1 \\  \\

0 + 0 + ... + 0 + i - 1 \\  \\

i - 1 \\

Final answer:

\boxed{\bold{i + {i}^{2} + {i}^{3} + {i}^{4} + .... + {i}^{202}=i-1}}

Hope it helps you.

To learn more on brainly:

1)the value of (1+i)^8+(1-i)^8

https://brainly.in/question/11366827

2) What is the value of the [i^19+(1÷i)^25]^2

https://brainly.in/question/3818960

Similar questions